Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS One ; 16(11): e0259804, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34797866

RESUMO

The diagnosis of pure neural leprosy is more challenging because patients share characteristics with other common pathologies, such as ulnar compression, which should be taken into consideration for differential diagnosis. In this study, we identify ulnar nerve conduction characteristics to aid in the differential diagnosis of ulnar neuropathy (UN) in leprosy and that of non-leprosy etiology. In addition, we include putative markers to better understand the inflammatory process that may occur in the nerve. Data were extracted from a database of people affected by leprosy (leprosy group) diagnosed with UN at leprosy diagnosis. A non-leprosy group of patients diagnosed with mechanical neuropathy (compressive, traumatic) was also included. Both groups were submitted to clinical, neurological, neurophysiological and immunological studies. Nerve enlargement and sensory impairment were significantly higher in leprosy patients than in patients with compressive UN. Bilateral impairment was significantly higher in the leprosy group than in the non-leprosy group. Leprosy reactions were associated to focal demyelinating lesions at the elbow and to temporal dispersion (TD). Clinical signs such as sensory impairment, nerve enlargement and bilateral ulnar nerve injury associated with eletrodiagnostic criteria such as demyelinating finds, specifically temporal dispersion, could be tools to help us decided on the best conduct in patients with elbow ulnar neuropathy and specifically decide if we should perform a nerve biopsy for diagnosis of pure neural leprosy.


Assuntos
Hanseníase/diagnóstico , Hanseníase/metabolismo , Neuropatias Ulnares/diagnóstico , Adolescente , Adulto , Idoso , Biomarcadores , Brasil/epidemiologia , Estudos Transversais , Gerenciamento de Dados , Bases de Dados Factuais , Diagnóstico Diferencial , Articulação do Cotovelo , Feminino , Humanos , Hanseníase Tuberculoide , Masculino , Pessoa de Meia-Idade , Condução Nervosa , Nervo Ulnar/metabolismo , Neuropatias Ulnares/fisiopatologia
2.
J Leukoc Biol ; 110(1): 167-176, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33040382

RESUMO

The enzyme IDO-1 is involved in the first stage of tryptophan catabolism and has been described in both microbicidal and tolerogenic microenvironments. Previous data from our group have shown that IDO-1 is differentially regulated in the distinctive clinical forms of leprosy. The present study aims to investigate the mechanisms associated with IDO-1 expression and activity in human monocyte-derived dendritic cells (mDCs) after stimulation with irradiated Mycobacterium leprae and its fractions. M. leprae and its fractions induced the expression and activity of IDO-1 in human mDCs. Among the stimuli studied, irradiated M. leprae and its membrane fraction (MLMA) induced the production of proinflammatory cytokines TNF and IL-6 whereas irradiated M. leprae and its cytosol fraction (MLSA) induced an increase in IL-10. We investigated if TLR2 activation was necessary for IDO-1 induction in mDCs. We observed that in cultures treated with a neutralizing anti-TLR2 antibody, there was a decrease in IDO-1 activity and expression induced by M. leprae and MLMA. The same effect was observed when we used a MyD88 inhibitor. Our data demonstrate that coculture of mDCs with autologous lymphocytes induced an increase in regulatory T (Treg) cell frequency in MLSA-stimulated cultures, showing that M. leprae constituents may play opposite roles that may possibly be related to the dubious effect of IDO-1 in the different clinical forms of disease. Our data show that M. leprae and its fractions are able to differentially modulate the activity and functionality of IDO-1 in mDCs by a pathway that involves TLR2, suggesting that this enzyme may play an important role in leprosy immunopathogenesis.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Tolerância Imunológica , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Hanseníase/etiologia , Hanseníase/metabolismo , Mycobacterium leprae/imunologia , Receptor 2 Toll-Like/metabolismo , Biomarcadores , Citometria de Fluxo , Humanos , Hanseníase/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
J Immunol ; 197(5): 1905-13, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474073

RESUMO

The chronic course of lepromatous leprosy may be interrupted by acute inflammatory episodes known as erythema nodosum leprosum (ENL). Despite its being a major cause of peripheral nerve damage in leprosy patients, the immunopathogenesis of ENL remains ill-defined. Recognized by distinct families of germline-encoded pattern recognition receptors, endogenous and pathogen-derived nucleic acids are highly immunostimulatory molecules that play a major role in the host defense against infections, autoimmunity, and autoinflammation. The aim of this work was to investigate whether DNA sensing via TLR-9 constitutes a major inflammatory pathway during ENL. Flow cytometry and immunohistochemistry analysis showed significantly higher TLR-9 expression in ENL when compared with nonreactional lepromatous patients, both locally in the skin lesions and in circulating mononuclear cells. The levels of endogenous and pathogen-derived TLR-9 ligands in the circulation of ENL patients were also higher. Furthermore, PBMCs isolated from the ENL patients secreted higher levels of TNF, IL-6, and IL-1ß in response to a TLR-9 agonist than those of the nonreactional patients and healthy individuals. Finally, E6446, a TLR-9 synthetic antagonist, was able to significantly inhibit the secretion of proinflammatory cytokines by ENL PBMCs in response to Mycobacterium leprae lysate. Our data strongly indicate that DNA sensing via TLR-9 constitutes a major innate immunity pathway involved in the pathogenesis and evolution of ENL. Thus, the use of TLR-9 antagonists emerges as a potential alternative to more effectively treat ENL aiming to prevent the development of nerve injuries and deformities in leprosy.


Assuntos
DNA/metabolismo , Eritema Nodoso/imunologia , Imunidade Inata , Hanseníase Virchowiana/imunologia , Transdução de Sinais , Receptor Toll-Like 9/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Eritema Nodoso/microbiologia , Feminino , Citometria de Fluxo , Humanos , Hanseníase Virchowiana/microbiologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae/química , Mycobacterium leprae/imunologia , Receptor Toll-Like 9/imunologia , Adulto Jovem
4.
Eur J Immunol ; 42(11): 2925-36, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22851198

RESUMO

Lepromatous macrophages possess a regulatory phenotype that contributes to the immunosuppression observed in leprosy. CD163, a scavenger receptor that recognizes hemoglobin-haptoglobin complexes, is expressed at higher levels in lepromatous cells, although its functional role in leprosy is not yet established. We herein demonstrate that human lepromatous lesions are microenvironments rich in IDO⁺CD163⁺. Cells isolated from these lesions were CD68⁺IDO⁺CD163⁺ while higher levels of sCD163 in lepromatous sera positively correlated with IL-10 levels and IDO activity. Different Myco-bacterium leprae (ML) concentrations in healthy monocytes likewise revealed a positive correlation between increased concentrations of the mycobacteria and IDO, CD209, and CD163 expression. The regulatory phenotype in ML-stimulated monocytes was accompanied by increased TNF, IL-10, and TGF-ß levels whereas IL-10 blockade reduced ML-induced CD163 expression. The CD163 blockade reduced ML uptake in human monocytes. ML uptake was higher in HEK293 cells transfected with the cDNA for CD163 than in untransfected cells. Simultaneously, increased CD163 expression in lepromatous cells seemed to be dependent on ML uptake, and contributed to augmented iron storage in lepromatous macrophages. Altogether, these results suggest that ML-induced CD163 expression modulates the host cell phenotype to create a favorable environment for myco-bacterial entry and survival.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Hanseníase Virchowiana/imunologia , Hanseníase Virchowiana/microbiologia , Macrófagos/imunologia , Mycobacterium leprae/imunologia , Receptores de Superfície Celular/imunologia , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Biópsia , Citometria de Fluxo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Interleucina-10/imunologia , Hanseníase Virchowiana/patologia , Macrófagos/microbiologia , RNA Mensageiro/química , RNA Mensageiro/genética , Receptores de Superfície Celular/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
J Immunol ; 187(5): 2548-58, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21813774

RESUMO

The mechanisms responsible for nerve injury in leprosy need further elucidation. We recently demonstrated that the foamy phenotype of Mycobacterium leprae-infected Schwann cells (SCs) observed in nerves of multibacillary patients results from the capacity of M. leprae to induce and recruit lipid droplets (LDs; also known as lipid bodies) to bacterial-containing phagosomes. In this study, we analyzed the parameters that govern LD biogenesis by M. leprae in SCs and how this contributes to the innate immune response elicited by M. leprae. Our observations indicated that LD formation requires the uptake of live bacteria and depends on host cell cytoskeleton rearrangement and vesicular trafficking. TLR6 deletion, but not TLR2, completely abolished the induction of LDs by M. leprae, as well as inhibited the bacterial uptake in SCs. M. leprae-induced LD biogenesis correlated with increased PGE(2) and IL-10 secretion, as well as reduced IL-12 and NO production in M. leprae-infected SCs. Analysis of nerves from lepromatous leprosy patients showed colocalization of M. leprae, LDs, and cyclooxygenase-2 in SCs, indicating that LDs are sites for PGE(2) synthesis in vivo. LD biogenesis Inhibition by the fatty acid synthase inhibitor C-75 abolished the effect of M. leprae on SC production of immunoinflammatory mediators and enhanced the mycobacterial-killing ability of SCs. Altogether, our data indicated a critical role for TLR6-dependent signaling in M. leprae-SC interactions, favoring phagocytosis and subsequent signaling for induction of LD biogenesis in infected cells. Moreover, our observations reinforced the role of LDs favoring mycobacterial survival and persistence in the nerve. These findings give further support to a critical role for LDs in M. leprae pathogenesis in the nerve.


Assuntos
Hanseníase/patologia , Células de Schwann/microbiologia , Células de Schwann/patologia , Receptor 6 Toll-Like/imunologia , Animais , Humanos , Imuno-Histoquímica , Corpos de Inclusão/imunologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Hanseníase/imunologia , Metabolismo dos Lipídeos/fisiologia , Lipídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Mycobacterium leprae/imunologia , Células de Schwann/imunologia , Receptor 6 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA