Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 7: 1959, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27994585

RESUMO

The inoculation of wines with autochthonous yeast allows obtaining complex wines with a peculiar microbial footprint characteristic from a wine region. Mixed inoculation of non-Saccharomyces yeasts and S. cerevisiae is of interest for the wine industry for technological and sensory reasons. However, the interactions between these yeasts are not well understood, especially those regarding the availability of nutrients. The aim of the present study was to analyze the effect of nitrogen and sugar concentration on the evolution of mixed yeast populations on controlled laboratory-scale fermentations monitored by density, plate culturing, PCR-DGGE and sugar and nitrogen consumption. Furthermore, the effect of the time of inoculation of Saccharomyces cerevisiae respect the initial co-inoculation of three non-Saccharomyces yeasts was evaluated over the evolution of fermentation. Our results have shown that S. cerevisiae inoculation during the first 48 h conferred a stabilizing effect over the fermentations with non-Saccharomyces strains tested and, generally, reduced yeast diversity at the end of the fermentation. On the other hand, nitrogen limitation increased the time of fermentation and also the proportion of non-Saccharomyces yeasts at mid and final fermentation. High sugar concentration resulted in different proportions of the inoculated yeast depending on the time of S. cerevisiae inoculation. This work emphasizes the importance of the concentration of nutrients on the evolution of mixed fermentations and points to the optimal conditions for a stable fermentation in which the inoculated yeasts survived until the end.

2.
Front Microbiol ; 7: 338, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014252

RESUMO

Interest in the use of non-Saccharomyces yeasts in winemaking has been increasing due to their positive contributions to wine quality. The non-Saccharomyces yeast Hanseniaspora vineae is an apiculate yeast that has been associated with the production of wine with good aromatic properties. However, little is known about the fermentation dynamics of H. vineae in natural must and its interaction with autochthonous yeasts. In the present study, we performed semi industrial fermentations of Macabeo and Merlot musts inoculated with either H. vineae or S. cerevisiae. The yeast population dynamics were monitored by plate culturing, PCR-DGGE and massive sequencing techniques. The results obtained with these techniques show that H. vineae was able dominate the autochthonous microbiota in Macabeo must but not in Merlot must, which exhibited a larger, more diverse yeast population. The presence of H. vineae throughout most of the Macabeo fermentation resulted in more fruity and flowery wine, as indicated by the chemical analysis of the final wines, which demonstrated a strong presence of phenyl ethyl acetate at concentrations higher than the threshold of perception and approximately 50 times more than that produced in wines fermented with S. cerevisiae. This compound is associated with fruity, floral and honey aromas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA