Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 22(33): 334222, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21386512

RESUMO

Surface composition plays an important role in carbon nanotube dispersibility in different environments. Indeed, it determines the choice of dispersion medium. In this paper the effect of oxidation on the dispersion of HiPCO single-walled carbon nanotubes (SWNTs) in N-methyl-pyrrolidinone (NMP), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), N-dodecyl-pyrrolidinone (N12P) and cyclohexyl-pyrrolidinone (CHP) was systematically studied. During the oxidation process, similar amounts of carboxylic acid and phenolic groups were introduced to mostly already existing defects. For each solvent the dispersion limits and the absorption coefficients were estimated by optical absorption analysis over a range of SWNT concentrations. The presence of acid oxygenated groups increased SWNT dispersibility in NMP, DMF and DMA, but decreased in N12P and CHP. The absorption coefficients, however, decreased for all solvents after oxidation, reflecting the weakening of the effective transition dipole of the π-π transition with even limited extension functionalization and solvent interaction. The analysis of the results in terms of Hansen and Flory-Huggins solubility parameters evidenced the influence of dipolar interactions and hydrogen bonding on the dispersibility of oxidized SWNTs.


Assuntos
Amidas/química , Coloides/química , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Oxigênio/química , Solventes/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA