Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Scand J Immunol ; 71(2): 63-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20384857

RESUMO

A new tuberculosis vaccine is urgently needed. Prime-boost strategies are considered very promising and the inclusion of BCG is highly desirable. In this investigation, we tested the protective efficacy of BCG delivered in the neonatal period followed by boosters in the adult phase with a DNA vaccine containing the hsp65 gene from Mycobacterium leprae (pVAXhsp65). Immune responses were characterized by serum anti-hsp65 antibody levels and IFN-gamma and IL-5 production by the spleen. Amounts of these cytokines were also determined in lung homogenates. Protective efficacy was established by the number of colony-forming units (CFU) and histopathological analysis of the lungs after challenge with Mycobacterium tuberculosis. Immunization with BCG alone triggered a significant reduction of CFU in the lungs and also clearly preserved the pulmonary parenchyma. BCG priming also increased the immunogenicity of pVAXhsp65. However, boosters with pVAXhsp65 or the empty vector abolished the protective efficacy of BCG. Also, higher IL-5 levels were produced by spleen and lungs after DNA boosters. These results demonstrated that neonatal BCG immunization followed by DNAhsp65 boosters is highly immunogenic but is not protective against tuberculosis.


Assuntos
Vacina BCG/imunologia , Proteínas de Bactérias/imunologia , Chaperonina 60/imunologia , Imunização Secundária/métodos , Tuberculose/imunologia , Tuberculose/prevenção & controle , Animais , Animais Recém-Nascidos , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Tuberculose/patologia , Vacinas de DNA/imunologia
2.
Braz. j. med. biol. res ; 40(11): 1495-1504, Nov. 2007. graf
Artigo em Inglês | LILACS | ID: lil-464311

RESUMO

We previously reported that a DNA vaccine constructed with the heat shock protein (HSP65) gene from Mycobacterium leprae (DNA-HSP65) was protective and also therapeutic in experimental tuberculosis. By the intramuscular route, this vaccine elicited a predominant Th1 response that was consistent with its protective efficacy against tuberculosis. It has been suggested that the immune response to Hsp60/65 may be the link between exposure to microorganisms and increased cardiovascular risk. Additionally, the high cholesterol levels found in atherosclerosis could modulate host immunity. In this context, we evaluated if an atherogenic diet could modulate the immune response induced by the DNA-HSP65 vaccine. C57BL/6 mice (4-6 animals per group) were initially submitted to a protocol of atherosclerosis induction and then immunized by the intramuscular or intradermal route with 4 doses of 100 mug DNA-HSP65. On day 150 (15 days after the last immunization), the animals were sacrificed and antibodies and cytokines were determined. Vaccination by the intramuscular route induced high levels of anti-Hsp65 IgG2a antibodies, but not anti-Hsp65 IgG1 antibodies and a significant production of IL-6, IFN-g and IL-10, but not IL-5, indicating a Th1 profile. Immunization by the intradermal route triggered a mixed pattern (Th1/Th2) characterized by synthesis of anti-Hsp65 IgG2a and IgG1 antibodies and production of high levels of IL-5, IL-6, IL-10, and IFN-g. These results indicate that experimentally induced atherosclerosis did not affect the ability of DNA-HSP65 to induce a predominant Th1 response that is potentially protective against tuberculosis.


Assuntos
Animais , Feminino , Camundongos , Aterosclerose/imunologia , Proteínas de Bactérias/imunologia , Chaperoninas/imunologia , Células Th1/imunologia , Vacinas contra a Tuberculose/imunologia , Vacinas de DNA/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Proteínas de Bactérias/administração & dosagem , Chaperoninas/administração & dosagem , Citocinas/sangue , Citocinas/imunologia , Dieta Aterogênica , Injeções Intradérmicas , Injeções Intramusculares , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Organismos Livres de Patógenos Específicos , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinas de DNA/administração & dosagem
3.
Braz J Med Biol Res ; 40(11): 1495-504, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17934646

RESUMO

We previously reported that a DNA vaccine constructed with the heat shock protein (HSP65) gene from Mycobacterium leprae (DNA-HSP65) was protective and also therapeutic in experimental tuberculosis. By the intramuscular route, this vaccine elicited a predominant Th1 response that was consistent with its protective efficacy against tuberculosis. It has been suggested that the immune response to Hsp60/65 may be the link between exposure to microorganisms and increased cardiovascular risk. Additionally, the high cholesterol levels found in atherosclerosis could modulate host immunity. In this context, we evaluated if an atherogenic diet could modulate the immune response induced by the DNA-HSP65 vaccine. C57BL/6 mice (4-6 animals per group) were initially submitted to a protocol of atherosclerosis induction and then immunized by the intramuscular or intradermal route with 4 doses of 100 microg DNA-HSP65. On day 150 (15 days after the last immunization), the animals were sacrificed and antibodies and cytokines were determined. Vaccination by the intramuscular route induced high levels of anti-Hsp65 IgG2a antibodies, but not anti-Hsp65 IgG1 antibodies and a significant production of IL-6, IFN-g and IL-10, but not IL-5, indicating a Th1 profile. Immunization by the intradermal route triggered a mixed pattern (Th1/Th2) characterized by synthesis of anti-Hsp65 IgG2a and IgG1 antibodies and production of high levels of IL-5, IL-6, IL-10, and IFN-g. These results indicate that experimentally induced atherosclerosis did not affect the ability of DNA-HSP65 to induce a predominant Th1 response that is potentially protective against tuberculosis.


Assuntos
Aterosclerose/imunologia , Proteínas de Bactérias/imunologia , Chaperoninas/imunologia , Células Th1/imunologia , Vacinas contra a Tuberculose/imunologia , Vacinas de DNA/imunologia , Animais , Autoanticorpos/sangue , Autoanticorpos/imunologia , Proteínas de Bactérias/administração & dosagem , Chaperonina 60 , Chaperoninas/administração & dosagem , Citocinas/sangue , Citocinas/imunologia , Dieta Aterogênica , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Injeções Intradérmicas , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos , Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/administração & dosagem , Vacinas de DNA/administração & dosagem
4.
Clin Exp Immunol ; 149(3): 570-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17590177

RESUMO

We have described previously the prophylactic and therapeutic effect of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in experimental murine tuberculosis. However, the high homology of this protein to the corresponding mammalian 60 kDa heat shock protein (Hsp60), together with the CpG motifs in the plasmid vector, could trigger or exacerbate the development of autoimmune diseases. The non-obese diabetic (NOD) mouse develops insulin-dependent diabetes mellitus (IDDM) spontaneously as a consequence of an autoimmune process that leads to destruction of the insulin-producing beta cells of the pancreas. IDDM is characterized by increased T helper 1 (Th1) cell responses toward several autoantigens, including Hsp60, glutamic acid decarboxylase and insulin. In the present study, we evaluated the potential of DNA-HSP65 injection to modulate diabetes in NOD mice. Our results show that DNA-HSP65 or DNA empty vector had no diabetogenic effect and actually protected NOD mice against the development of severe diabetes. However, this effect was more pronounced in DNA-HSP65-injected mice. The protective effect of DNA-HSP65 injection was associated with a clear shift in the cellular infiltration pattern in the pancreas. This change included reduction of CD4(+) and CD8(+) T cells infiltration, appearance of CD25(+) cells influx and an increased staining for interleukin (IL)-10 in the islets. These results show that DNA-HSP65 can protect NOD mice against diabetes and can therefore be considered in the development of new immunotherapeutic strategies.


Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Vacinas contra a Tuberculose/imunologia , Animais , Anticorpos Antibacterianos/biossíntese , Autoantígenos/imunologia , Proteínas de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Chaperonina 60 , Chaperoninas/imunologia , Progressão da Doença , Imunoglobulina G/biossíntese , Interleucina-10/metabolismo , Subunidade alfa de Receptor de Interleucina-2/análise , Ilhotas Pancreáticas/imunologia , Camundongos , Camundongos Endogâmicos NOD , Fator de Necrose Tumoral alfa/metabolismo , Vacinas de DNA/imunologia
5.
Genet Vaccines Ther ; 4: 1, 2006 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-16445866

RESUMO

In order to assess a new strategy of DNA vaccine for a more complete understanding of its action in immune response, it is important to determine the in vivo biodistribution fate and antigen expression. In previous studies, our group focused on the prophylactic and therapeutic use of a plasmid DNA encoding the Mycobacterium leprae 65-kDa heat shock protein (Hsp65) and achieved an efficient immune response induction as well as protection against virulent M. tuberculosis challenge. In the present study, we examined in vivo tissue distribution of naked DNA-Hsp65 vaccine, the Hsp65 message, genome integration and methylation status of plasmid DNA. The DNA-Hsp65 was detectable in several tissue types, indicating that DNA-Hsp65 disseminates widely throughout the body. The biodistribution was dose-dependent. In contrast, RT-PCR detected the Hsp65 message for at least 15 days in muscle or liver tissue from immunized mice. We also analyzed the methylation status and integration of the injected plasmid DNA into the host cellular genome. The bacterial methylation pattern persisted for at least 6 months, indicating that the plasmid DNA-Hsp65 does not replicate in mammalian tissue, and Southern blot analysis showed that plasmid DNA was not integrated. These results have important implications for the use of DNA-Hsp65 vaccine in a clinical setting and open new perspectives for DNA vaccines and new considerations about the inoculation site and delivery system.

6.
Immunology ; 113(1): 130-8, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15312144

RESUMO

A DNA vaccine based on the heat-shock protein 65 Mycobacterium leprae gene (pHSP65) presented a prophylactic and therapeutic effect in an experimental model of tuberculosis. In this paper, we addressed the question of which protective mechanisms are activated in Mycobacterium tuberculosis-infected mice after immune therapy with pHSP65. We evaluated activation of the cellular immune response in the lungs of infected mice 30 days after infection (initiation of immune therapy) and in those of uninfected mice. After 70 days (end of immune therapy), the immune responses of infected untreated mice, infected pHSP65-treated mice and infected pCDNA3-treated mice were also evaluated. Our results show that the most significant effect of pHSP65 was the stimulation of CD8+ lung cell activation, interferon-gamma recovery and reduction of lung injury. There was also partial restoration of the production of tumour necrosis factor-alpha. Treatment with pcDNA3 vector also induced an immune stimulatory effect. However, only infected pHSP65-treated mice were able to produce significant levels of interferon-gamma and to restrict the growth of bacilli.


Assuntos
Proteínas de Bactérias/genética , Linfócitos T CD8-Positivos/imunologia , Chaperoninas/genética , Interferon gama/biossíntese , Tuberculose Pulmonar/terapia , Vacinas de DNA/uso terapêutico , Animais , Antígenos CD18/metabolismo , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/imunologia , Chaperonina 60 , Proteína Ligante Fas , Feminino , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia , Regulação para Cima , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA