Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros


Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(22): 7449-7460, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36202935

RESUMO

Biomaterials and biopolymers, such as bacterial cellulose (BC), are becoming increasingly important as sustainable materials with a wide range of potential applications. However, BC industrial production is associated with several difficulties such as low BC production yields and high production costs; therefore, cheap alternative growth media, e.g. apple juice are being studied intensively. The aim of this study is to evaluate BC synthesis under static conditions on apple juice medium (AJM). The optimal concentration of apple juice in unsupplemented AJM for Novacetimonas hansenii MSCL 1646 was shown by its dilution 1:6 with water, which resulted in 0.89 ± 0.01 g/L of dry BC weight after 10 cultivation days. Low BC synthesis can be associated with insufficient N concentration in apple juice; therefore, different organic and inorganic N sources were evaluated in combination with AJM, and beef extract (5 g/L) was found to be the most suitable. Further, AJM optimisation experiment showed the optimal apple juice and beef extract concentrations as 1:2 and 15 g/L respectively, which resulted in 17.27 ± 0.07 g/L of dry BC weight, which is significantly higher than in standard Hestrin-Schramm (HS) medium (4.07 ± 0.02 g/L). Analysis of mechanical and physical properties showed that use of AJM results in changes in BC properties compared with the standard HS medium. Results of the study indicate that apple juice is an effective and cheap C source that in combination with appropriate N source leads to high BC synthesis and makes it suitable for industrial BC production. KEY POINTS: • Low quality apples can be used as raw material for BC production; • Beef extract improves BC synthesis in apple juice medium; • Use of apple juice and beef extract affect mechanical properties of BC.


Assuntos
Celulose , Malus , Meios de Cultura , Sucos de Frutas e Vegetais , Extratos Vegetais
2.
Appl Microbiol Biotechnol ; 101(3): 1003-1012, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27678116

RESUMO

Isolate B17 from Kombucha was estimated to be an efficient producer of bacterial cellulose (BC). The isolate was deposited under the number P 1463 and identified as Komagataeibacter rhaeticus by comparing a generated amplified fragment length polymorphism (AFLP™) DNA fingerprint against a reference database. Static cultivation of the K. rhaeticus strain P 1463 in Hestrin and Schramm (HS) medium resulted in 4.40 ± 0.22 g/L BC being produced, corresponding to a BC yield from glucose of 25.30 ± 1.78 %, when the inoculum was made with a modified HS medium containing 10 g/L glucose. Fermentations for 5 days using media containing apple juice with analogous carbon source concentrations resulted in 4.77 ± 0.24 g/L BC being synthesised, corresponding to a yield from the consumed sugars (glucose, fructose and sucrose) of 37.00 ± 2.61 %. The capacity of K. rhaeticus strain P 1463 to synthesise BC was found to be much higher than that of two reference strains for cellulose production, Komagataeibacter xylinus DSM 46604 and Komagataeibacter hansenii DSM 5602T, and was also considerably higher than that of K. hansenii strain B22, isolated from another Kombucha sample. The BC synthesised by K. rhaeticus strain P 1463 after 40 days of cultivation in HS medium with additional glucose supplemented to the cell culture during cultivation was shown to have a degree of polymerization of 3300.0 ± 122.1 glucose units, a tensile strength of 65.50 ± 3.27 MPa and a length at break of 16.50 ± 0.83 km. For the other strains, these properties did not exceed 25.60 ± 1.28 MPa and 15.20 ± 0.76 km.


Assuntos
Celulose/biossíntese , Fermentação , Gluconacetobacter/metabolismo , Chá de Kombucha/microbiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Carbono/metabolismo , Celulose/metabolismo , Meios de Cultura/química , Gluconacetobacter/classificação , Gluconacetobacter/crescimento & desenvolvimento , Gluconacetobacter/isolamento & purificação , Glucose/metabolismo
3.
Carbohydr Polym ; 144: 33-40, 2016 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-27083790

RESUMO

Bacterial cellulose (BC) samples were obtained using two culture media (glucose and glucose+fructose) and two bacteria (Komagataeibacter rhaeticus and Komagataeibacter hansenii). Nanopaper was obtained from the BC through oxidation and both were studied to determine the impact of culture media and bacteria strain on nanofiber structure and mechanical properties. AFM and SEM were used to investigate fibre dimensions and network morphology; FTIR and XRD to determine cellulose purity and crystallinity; carboxyl content, degree of polymerisation and zeta potential were used to characterise nanofibers. Tensile testing showed that nanopaper has up to 24 times higher Young's modulus (7.39GPa) than BC (0.3GPa). BC displayed high water retention values (86-95%) and a degree of polymerisation up to 2540. Nanofibers obtained were 80-120nm wide and 600-1200nm long with up to 15% higher crystallinity than the original BC. It was concluded that BC is an excellent source for easily obtainable, highly crystalline and strong nanofibers.


Assuntos
Acetobacteraceae/metabolismo , Celulose/química , Celulose/biossíntese , Frutose/metabolismo , Glucose/metabolismo , Nanofibras , Papel , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA