Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 78(1): 293-300, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19841079

RESUMO

Leprosy is a chronic but treatable infectious disease caused by the intracellular pathogen Mycobacterium leprae. Host immunity to M. leprae determines the diversity of clinical manifestations seen in patients, from tuberculoid leprosy with robust production of Th1-type cytokines to lepromatous disease, characterized by elevated levels of Th2-type cytokines and a suboptimal proinflammatory response. Previous reports have indicated that M. leprae is a poor activator of macrophages and dendritic cells in vitro. To understand whether M. leprae fails to elicit an optimal Th1 immune response or actively interferes with its induction, we have examined the early interactions between M. leprae and monocytes from healthy human donors. We found that, in naïve monocytes, M. leprae induced high levels of the negative regulatory molecules MCP-1 and interleukin-1 (IL-1) receptor antagonist (IL-1Ra), while suppressing IL-6 production through phosphoinositide-3 kinase (PI3K)-dependent mechanisms. In addition, low levels of proinflammatory cytokines were observed in association with reduced activation of nuclear factor-kappaB (NF-kappaB) and delayed activation of IL-1beta-converting enzyme, ICE (caspase-1), in monocytes stimulated with M. leprae compared with Mycobacterium bovis BCG stimulation. Interestingly, although in itself a weak stimulator of cytokines, M. leprae primed the cells for increased production of tumor necrosis factor alpha and IL-10 in response to a strongly inducing secondary stimulus. Taken together, our results suggest that M. leprae plays an active role to control the release of cytokines from monocytes by providing both positive and negative regulatory signals via multiple signaling pathways involving PI3K, NF-kappaB, and caspase-1.


Assuntos
Citocinas/metabolismo , Monócitos/metabolismo , Mycobacterium leprae/fisiologia , Células Cultivadas , Citocinas/classificação , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/microbiologia , Mycobacterium bovis , Proteína Adaptadora de Sinalização NOD2/agonistas , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Toll-Like/agonistas
2.
Infect Immun ; 76(7): 3027-36, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18443098

RESUMO

Mycobacterium tuberculosis possesses a diversity of potential virulence factors including complex branched lipids such as the phenolic glycolipid PGL-tb. PGL-tb expression by the clinical M. tuberculosis isolate HN878 has been associated with a less efficient Th1 response and increased virulence in mice and rabbits. It has been suggested that the W-Beijing family is the only group of M. tuberculosis strains with an intact pks1-15 gene, required for the synthesis of PGL-tb and capable of producing PGL-tb. We have found that some strains with an intact pks1-15 do not produce PGL-tb while others may produce a variant of PGL-tb. We examined the early host cytokine response to infection with these strains in vitro to better understand the effect of PGL-tb synthesis on immune responses. In addition, we generated a PGL-tb-producing H37Rv in order to determine the effect of PGL-tb production on the host immune response during infection by a strain normally devoid of PGL-tb synthesis. We observed that PGL-tb production by clinical M. tuberculosis isolates affected cytokine production differently depending on the background of the strain. Importantly, while ectopic PGL-tb production by H37Rv suppressed the induction of several pro- and anti-inflammatory cytokines in vitro in human monocytes, it did not lead to increased virulence in infected mice and rabbits. Collectively, our data indicate that, while PGL-tb may play a role in the immunogenicity and/or virulence of M. tuberculosis, it probably acts in concert with other bacterial factors which seem to be dependent on the background of the strain.


Assuntos
Antígenos de Bactérias/imunologia , Glicolipídeos/imunologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Animais , Antígenos de Bactérias/biossíntese , Células Cultivadas , Citocinas/biossíntese , Glicolipídeos/biossíntese , Humanos , Leucócitos Mononucleares/microbiologia , Camundongos , Monócitos/microbiologia , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Coelhos , Especificidade da Espécie , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/fisiopatologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA