Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros


Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
mBio ; 5(6): e02020, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25370496

RESUMO

UNLABELLED: Mycobacterial evolution involves various processes, such as genome reduction, gene cooption, and critical gene acquisition. Our comparative genome size analysis of 44 mycobacterial genomes revealed that the nonpathogenic (NP) genomes were bigger than those of opportunistic (OP) or totally pathogenic (TP) mycobacteria, with the TP genomes being smaller yet variable in size--their genomic plasticity reflected their ability to evolve and survive under various environmental conditions. From the 44 mycobacterial species, 13 species, representing TP, OP, and NP, were selected for genomic-relatedness analyses. Analysis of homologous protein-coding genes shared between Mycobacterium indicus pranii (NP), Mycobacterium intracellulare ATCC 13950 (OP), and Mycobacterium tuberculosis H37Rv (TP) revealed that 4,995 (i.e., ~95%) M. indicaus pranii proteins have homology with M. intracellulare, whereas the homologies among M. indicus pranii, M. intracellulare ATCC 13950, and M. tuberculosis H37Rv were significantly lower. A total of 4,153 (~79%) M. indicus pranii proteins and 4,093 (~79%) M. intracellulare ATCC 13950 proteins exhibited homology with the M. tuberculosis H37Rv proteome, while 3,301 (~82%) and 3,295 (~82%) M. tuberculosis H37Rv proteins showed homology with M. indicus pranii and M. intracellulare ATCC 13950 proteomes, respectively. Comparative metabolic pathway analyses of TP/OP/NP mycobacteria showed enzymatic plasticity between M. indicus pranii (NP) and M. intracellulare ATCC 13950 (OP), Mycobacterium avium 104 (OP), and M. tuberculosis H37Rv (TP). Mycobacterium tuberculosis seems to have acquired novel alternate pathways with possible roles in metabolism, host-pathogen interactions, virulence, and intracellular survival, and by implication some of these could be potential drug targets. IMPORTANCE: The complete sequence analysis of Mycobacterium indicus pranii, a novel species of Mycobacterium shown earlier to have strong immunomodulatory properties and currently in use for the treatment of leprosy, places it evolutionarily at the point of transition to pathogenicity. With the purpose of establishing the importance of M. indicus pranii in providing insight into the virulence mechanism of tuberculous and nontuberculous mycobacteria, we carried out comparative genomic and proteomic analyses of 44 mycobacterial species representing nonpathogenic (NP), opportunistic (OP), and totally pathogenic (TP) mycobacteria. Our results clearly placed M. indicus pranii as an ancestor of the M. avium complex. Analyses of comparative metabolic pathways between M. indicus pranii (NP), M. tuberculosis (TP), and M. intracellulare (OP) pointed to the presence of novel alternative pathways in M. tuberculosis with implications for pathogenesis and survival in the human host and identification of new drug targets.


Assuntos
Adaptação Biológica , Adaptação Fisiológica , Microbiologia Ambiental , Variação Genética , Redes e Vias Metabólicas/genética , Mycobacterium/genética , Tuberculose/microbiologia , Proteínas de Bactérias/genética , Análise por Conglomerados , Evolução Molecular , Genoma Bacteriano , Humanos , Mycobacterium/metabolismo , Mycobacterium/patogenicidade , Filogenia , Homologia de Sequência de Aminoácidos
2.
PLoS One ; 4(7): e6263, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19606228

RESUMO

BACKGROUND: Mycobacterium indicus pranii (MIP), popularly known as Mw, is a cultivable, non-pathogenic organism, which, based on its growth and metabolic properties, is classified in Runyon Group IV along with M. fortuitum, M. smegmatis and M. vaccae. The novelty of this bacterium was accredited to its immunological ability to undergo antigen driven blast transformation of leukocytes and delayed hypersensitivity skin test in leprosy patients, a disease endemic in the Indian sub-continent. Consequently, MIP has been extensively evaluated for its biochemical and immunological properties leading to its usage as an immunomodulator in leprosy and tuberculosis patients. However, owing to advances in sequencing and culture techniques, the citing of new strains with almost 100% similarity in the sequences of marker genes like 16S rRNA, has compromised the identity of MIP as a novel species. Hence, to define its precise taxonomic position, we have carried out polyphasic taxonomic studies on MIP that integrate its phenotypic, chemotaxonomic and molecular phylogenetic attributes. METHODOLOGY/PRINCIPAL FINDINGS: The comparative analysis of 16S rRNA sequence of MIP by using BLAST algorithm at NCBI (nr database) revealed a similarity of > or =99% with M. intracellulare, M. arosiense, M. chimaera, M. seoulense, M. avium subsp. hominissuis, M. avium subsp. paratuberculosis and M. bohemicum. Further analysis with other widely used markers like rpoB and hsp65 could resolve the phylogenetic relationship between MIP and other closely related mycobacteria apart from M. intracellulare and M. chimaera, which shares > or =99% similarity with corresponding MIP orthologues. Molecular phylogenetic analysis, based on the concatenation of candidate orthologues of 16S rRNA, hsp65 and rpoB, also substantiated its distinctiveness from all the related organisms used in the analysis excluding M. intracellulare and M. chimaera with which it exhibited a close proximity. This necessitated further analysis of MIP with more sensitive and segregating parameters to ascertain its precise taxonomic position as a new species. The analysis of MIP and its comparison with other mycobacterial reference strains based on cellular and biochemical features, growth characteristics and chemotaxonomic studies like FAME profiling confirmed that MIP is uniquely endowed with diverse metabolic attributes that effectively distinguishes it from all the closely related mycobacteria including M. intracellulare and M. chimaera. CONCLUSION: The results presented in this study coupled with the non-pathogenic nature and different biochemical and immunomodulatory properties of MIP affirm it as a distinct species belonging to M. avium complex (MAC). It is further proposed to use an earlier suggested name Mycobacterium indicus pranii for this newly established mycobacterial species. This study also exemplifies the growing need for a uniform, consensus based broader polyphasic frame work for the purpose of taxonomy and speciation, particularly in the genus Mycobacterium.


Assuntos
Mycobacterium/classificação , Algoritmos , Dados de Sequência Molecular , Mycobacterium/genética , Mycobacterium/crescimento & desenvolvimento , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
3.
PLoS One ; 2(10): e968, 2007 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17912347

RESUMO

BACKGROUND: Evolutionary dynamics plays a central role in facilitating the mechanisms of species divergence among pathogenic and saprophytic mycobacteria. The ability of mycobacteria to colonize hosts, to proliferate and to cause diseases has evolved due to its predisposition to various evolutionary forces acting over a period of time. Mycobacterium indicus pranii (MIP), a taxonomically unknown 'generalist' mycobacterium, acts as an immunotherapeutic against leprosy and is approved for use as a vaccine against it. The large-scale field trials of this MIP based leprosy vaccine coupled with its demonstrated immunomodulatory and adjuvant property has led to human clinical evaluations of MIP in interventions against HIV-AIDS, psoriasis and bladder cancer. MIP, commercially available as 'Immuvac', is currently the focus of advanced phase III clinical trials for its antituberculosis efficacy. Thus a comprehensive analysis of MIP vis-à-vis evolutionary path, underpinning its immanent immunomodulating properties is of the highest desiderata. PRINCIPAL FINDINGS: Genome wide comparisons together with molecular phylogenetic analyses by fluorescent amplified fragment length polymorphism (FAFLP), enterobacterial repetitive intergenic consensus (ERIC) based genotyping and candidate orthologues sequencing revealed that MIP has been the predecessor of highly pathogenic Mycobacterium avium intracellulare complex (MAIC) that did not resort to parasitic adaptation by reductional gene evolution and therefore, preferred a free living life-style. Further analysis suggested a shared aquatic phase of MAIC bacilli with the early pathogenic forms of Mycobacterium, well before the latter diverged as 'specialists'. CONCLUSIONS/SIGNIFICANCE: This evolutionary paradigm possibly affirms to marshall our understanding about the acquisition and optimization of virulence in mycobacteria and determinants of boundaries therein.


Assuntos
Imunoterapia/métodos , Hanseníase/imunologia , Infecções por Mycobacterium/imunologia , Mycobacterium/genética , Mycobacterium/imunologia , Evolução Molecular , Corantes Fluorescentes/farmacologia , Técnicas Genéticas , Genoma Bacteriano , Genótipo , Humanos , Hanseníase/terapia , Modelos Biológicos , Modelos Genéticos , Filogenia , Polimorfismo Genético , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA