Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(11): 13021-13028, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32081012

RESUMO

The uncertain dopant location in the bulk heterojunction (BHJ) film hinders the wide application of molecular doping in polymer solar cells (PSCs) as is in other organic devices. It is known that the interaction between the dopant and component governs the dopant distribution in the BHJ film and thus largely controls the effectiveness of molecular doping. After excluding the strong dopant/component interaction by forming the charge-transfer complex in the solution, we estimate the dopant/component miscibility by calculating the difference of Hansen's total solubility parameters (△δi-Hansen) and prove its correctness by contact angle measurements, and two model systems of poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophe-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T)/poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (N2200) and poly[4,8-bis(5-(2-ethylhexyl)-thiophene-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl]] (PCE10)/N2200 are selected to reveal the miscibility-photovoltaic performance relations. Only the material combination with large △δi-Hansen between the n-dopant (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine (N-DMBI) and the donor polymer achieves enhanced photovoltaic performance. After that, we examine the doped morphology of polymer blends. Since the polymers' crystallizations are negatively affected by N-DMBI addition, we ensure the significance of n-doping on the enhanced device performance. Besides the dopant/polymer interaction, the solvent/polymer and solvent/dopant interactions are also considered to evaluate the kinetic effect on N-DMBI distribution by drawing the ternary phase diagram. We conclude that the kinetic morphological evolution does not change the miscibility-governed N-DMBI distribution in the BHJ film. Finally, we provide a direct relationship between the N-DMBI position and the device property by fabricating the bilayer devices. The enhancement of photovoltaic performances is observed in both material systems only if the N-DMBI distributes in N2200. Our work outlines a basis for using the dopant/component interaction and ternary phase diagram to predict the dopant distribution before extensive experiments. It significantly reduces the trial-and-error work and increases the reliability of molecularly doped PSCs.

2.
Appl Environ Microbiol ; 83(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28159794

RESUMO

Rifamycin and its derivatives are particularly effective against the pathogenic mycobacteria Mycobacterium tuberculosis and Mycobacterium leprae Although the biosynthetic pathway of rifamycin has been extensively studied in Amycolatopsis mediterranei, little is known about the regulation in rifamycin biosynthesis. Here, an in vivo transposon system was employed to identify genes involved in the regulation of rifamycin production in A. mediterranei U32. In total, nine rifamycin-deficient mutants were isolated, among which three mutants had the transposon inserted in AMED_0655 (rifZ, encoding a LuxR family regulator). The rifZ gene was further knocked out via homologous recombination, and the transcription of genes in the rifamycin biosynthetic gene cluster (rif cluster) was remarkably reduced in the rifZ null mutant. Based on the cotranscription assay results, genes within the rif cluster were grouped into 10 operons, sharing six promoter regions. By use of electrophoretic mobility shift assay and DNase I footprinting assay, RifZ was proved to specially bind to all six promoter regions, which was consistent with the fact that RifZ regulated the transcription of the whole rif cluster. The binding consensus sequence was further characterized through alignment using the RifZ-protected DNA sequences. By use of bionformatic analysis, another five promoters containing the RifZ box (CTACC-N8-GGATG) were identified, among which the binding of RifZ to the promoter regions of both rifK and orf18 (AMED_0645) was further verified. As RifZ directly regulates the transcription of all operons within the rif cluster, we propose that RifZ is a pathway-specific regulator for the rif cluster.IMPORTANCE To this day, rifamycin and its derivatives are still the first-line antituberculosis drugs. The biosynthesis of rifamycin has been extensively studied, and most biosynthetic processes have been characterized. However, little is known about the regulation of the transcription of the rifamycin biosynthetic gene cluster (rif cluster), and no regulator has been characterized. Through the employment of transposon screening, we here characterized a LuxR family regulator, RifZ, as a direct transcriptional activator for the rif cluster. As RifZ directly regulates the transcription of the entire rif cluster, it is considered a pathway-specific regulator for rifamycin biosynthesis. Therefore, as the first regulator characterized for direct regulation of rif cluster transcription, RifZ may provide a new clue for further engineering of high-yield industrial strains.


Assuntos
Actinomycetales/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Rifamicinas/biossíntese , Transativadores/genética , Transativadores/metabolismo , Actinomycetales/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Elementos de DNA Transponíveis , Técnicas de Inativação de Genes , Recombinação Homóloga , Família Multigênica , Mutação , Fases de Leitura Aberta , Óperon , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA