Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-29250493

RESUMO

Tuberculosis (TB) remains one of the most severe infectious diseases. It is still of paramount importance to establish more accurate, rapid, and efficient diagnostic methods. Since infection with Mycobacterium tuberculosis (M. tb) is largely mediated through the respiratory tract, IgA responses against mycobacterial proteins are worthy of investigation for their potential clinical utility. In this study, the IgA response targeting lipoprotein Z (LppZ) was determined by using a homemade ELISA with plasma of TB patients (N = 125), LTBI individuals (N = 92), healthy controls (HCs) (N = 165), as well as TB patients undergoing anti-TB treatment (N = 9). In parallel the antigen-specific IFN-γ release from PBMCs triggered by LppZ and M. tb-specific ESAT-6 or CFP-10 was detected by using an ELISPOT assay. It was found that the LppZ-specific IgA level was dramatically higher in TB patients than in HCs (p < 0.0001). Compared to that before anti-TB treatment, the LppZ-specific IgA level decreased substantially after 2 months of anti-TB treatment (p = 0.0297) and remained at low levels until the end of the treatment. What is more, pulmonary TB patients exhibited significantly higher LppZ-specific IgA-values than extra-pulmonary TB patients (p = 0.0296). Interestingly, the LppZ-specific IgA-values were negatively correlated to the amounts of IFN-γ released in response to LppZ with statistical significance (r = -0.5806, p = 0.0002). LppZ-specific IgA level was also higher in LTBI individuals than in HCs (p < 0.0001). Additionally there were some PPD+ HC individuals with high LppZ-specific IgA levels but the potential of this assay for identifying leaky LTBI in PPD+ HCs needs to be further investigated through follow-up studies. The sensitivity of detecting TB solely with ESAT-6 or CFP-10-specific IFN-γ release was increased by including the LppZ-specific IgA results, respectively, from 86.11 to 100% and 88.89 to 100%; the sensitivity of screening for LTBI was increased from 80.36 to 83.93% and 57.14 to 69.64%, respectively. The higher LppZ-specific IgA responses in TB and LTBI populations than in controls indicated high immunoreactivity to LppZ upon M. tb infection. Although the assay was not efficient enough for independent application in sero-diagnosis, LppZ-specific IgA might become a complementary biomarker for the improvement of TB and LTBI screening.


Assuntos
Imunoglobulina A/isolamento & purificação , Tuberculose Latente/diagnóstico , Tuberculose Latente/imunologia , Lipoproteínas/isolamento & purificação , Mycobacterium tuberculosis/imunologia , Tuberculose/diagnóstico , Tuberculose/imunologia , Adulto , Idoso , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Biomarcadores , ELISPOT/métodos , Feminino , Humanos , Imunidade Celular , Interferon gama/metabolismo , Tuberculose Latente/microbiologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Lipoproteínas/genética , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/isolamento & purificação , Sensibilidade e Especificidade , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia
2.
Appl Environ Microbiol ; 83(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28159794

RESUMO

Rifamycin and its derivatives are particularly effective against the pathogenic mycobacteria Mycobacterium tuberculosis and Mycobacterium leprae Although the biosynthetic pathway of rifamycin has been extensively studied in Amycolatopsis mediterranei, little is known about the regulation in rifamycin biosynthesis. Here, an in vivo transposon system was employed to identify genes involved in the regulation of rifamycin production in A. mediterranei U32. In total, nine rifamycin-deficient mutants were isolated, among which three mutants had the transposon inserted in AMED_0655 (rifZ, encoding a LuxR family regulator). The rifZ gene was further knocked out via homologous recombination, and the transcription of genes in the rifamycin biosynthetic gene cluster (rif cluster) was remarkably reduced in the rifZ null mutant. Based on the cotranscription assay results, genes within the rif cluster were grouped into 10 operons, sharing six promoter regions. By use of electrophoretic mobility shift assay and DNase I footprinting assay, RifZ was proved to specially bind to all six promoter regions, which was consistent with the fact that RifZ regulated the transcription of the whole rif cluster. The binding consensus sequence was further characterized through alignment using the RifZ-protected DNA sequences. By use of bionformatic analysis, another five promoters containing the RifZ box (CTACC-N8-GGATG) were identified, among which the binding of RifZ to the promoter regions of both rifK and orf18 (AMED_0645) was further verified. As RifZ directly regulates the transcription of all operons within the rif cluster, we propose that RifZ is a pathway-specific regulator for the rif cluster.IMPORTANCE To this day, rifamycin and its derivatives are still the first-line antituberculosis drugs. The biosynthesis of rifamycin has been extensively studied, and most biosynthetic processes have been characterized. However, little is known about the regulation of the transcription of the rifamycin biosynthetic gene cluster (rif cluster), and no regulator has been characterized. Through the employment of transposon screening, we here characterized a LuxR family regulator, RifZ, as a direct transcriptional activator for the rif cluster. As RifZ directly regulates the transcription of the entire rif cluster, it is considered a pathway-specific regulator for rifamycin biosynthesis. Therefore, as the first regulator characterized for direct regulation of rif cluster transcription, RifZ may provide a new clue for further engineering of high-yield industrial strains.


Assuntos
Actinomycetales/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Rifamicinas/biossíntese , Transativadores/genética , Transativadores/metabolismo , Actinomycetales/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Elementos de DNA Transponíveis , Técnicas de Inativação de Genes , Recombinação Homóloga , Família Multigênica , Mutação , Fases de Leitura Aberta , Óperon , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA