Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Immunol ; 138: 48-57, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343723

RESUMO

Knowledge of immunodominant B-cell epitopes is essential to design powerful diagnostic strategies aiming for antibody detection. Outstanding progress in computational prediction has achieved a significant contribution to the biomedical fields, including immunodiagnosis. In silico analysis may have an even more important role when information concerning antigens from etiologic agents of neglected diseases, such as leprosy, is scarce. The aim of this study was to provide mapping of B-cell epitopes from two Mycobacterium leprae-derived antigens (Ag85B and ML2055), confirm their antigenicity, and to assess the ability of in silico immunoinformatics tools to accurately predict them. Linear B-cell epitopes predicted by ABCpred and SVMTrip servers were compared to antigenic regions of synthetic overlapping peptides that exhibited reactivity to antibodies from patients with leprosy. Our in vitro results identified several immunodominant regions that had also been indicated by in silico prediction, providing agreement between experimental and simulated data. After chemical synthesis, we used enzyme-linked immunosorbent assays to determine the effectiveness of the first identified sequence (GTNVPAEFLENFVHG) which had 72 % sensitivity and 78 % specificity (AUC = 0.79) while the second one (PVSSEAQPGDPNAPS) had 72 % sensitivity and 93.8 % specificity (AUC = 0.85). Using dot blotting, an easy-to-read visual test, both peptides could distinguish sera from patients with leprosy from those with tuberculosis and from sera of healthy volunteers. Our findings suggest that these synthetic peptides, with some refinement, may be useful as serological diagnostic antigens for leprosy. In addition, it was displayed that immunoinformatics provides reliable information for mapping potential B-cell epitopes for development of peptide-based diagnostic assays for neglected diseases.


Assuntos
Antígenos de Bactérias/imunologia , Mapeamento de Epitopos/métodos , Epitopos de Linfócito B/imunologia , Hanseníase/diagnóstico , Testes Sorológicos/métodos , Adulto , Anticorpos Antibacterianos/imunologia , Feminino , Humanos , Hanseníase/sangue , Hanseníase/imunologia , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae
2.
Talanta ; 187: 165-171, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853030

RESUMO

The biotechnological evolution towards the development of antigens to detect leprosy has been progressing. However, the identification of leprosy in paucibacillary patients, based solely on the antigen-antibody interaction still remains a challenge. The complexity of clinical manifestations requires innovative approaches to improve the sensitivity of assays to detect leprosy before the onset of symptoms, thus avoiding disabilities and contributing, indirectly, to reduce transmission. In this study, the strategies employed for early leprosy diagnosis were: i. using a phage-displayed mimotope (APDDPAWQNIFNLRR) which mimics an immunodominant sequence (PPNDPAWQRNDPILQ) of an antigen of Mycobacterium leprae known as Ag85B; ii. engineering the mimotope by adding a C-terminal flexible spacer (SGSG-C); iii. conjugating the mimotope to a carrier protein to provide better exposure to antibodies; iv. amplifying the signal using biotin-streptavidin detection system in an ELISA; and v. coating the optimized mimotope on a quartz crystal microbalance (QCM) sensor for label-free biosensing. The ELISA sensitivity increased up to 91.7% irrespective of the immunological profile of the 132 patients assayed. By using comparative modeling, the M. tuberculosis Ag85B was employed as a template to ascertain which features make the mimotope a good antigen in terms of its specificity. For the first time, a sensitive QCM-based immunosensor to detect anti M. leprae antibodies in human serum was used. M. leprae antibodies could also be detected in the sera of paucibacillary patients; thus, the use of a mimotope-derived synthetic peptide as bait for antibodies in a novel analytical label-free immunoassay for leprosy diagnosis exhibits great potential.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Hanseníase/diagnóstico , Mycobacterium leprae/isolamento & purificação , Técnicas de Microbalança de Cristal de Quartzo , Adulto , Animais , Biomarcadores/análise , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
3.
PLoS One ; 9(8): e106222, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170947

RESUMO

BACKGROUND: The diagnosis of leprosy is primarily based on clinical manifestations, and there is no widely available laboratory test for the early detection of this disease, which is caused by Mycobacterium leprae. In fact, early detection and treatment are the key elements to the successful control of leprosy. METHODOLOGY/PRINCIPAL FINDINGS: Peptide ligands for antibodies from leprosy patients were selected from phage-displayed peptide libraries. Three peptide sequences expressed by reactive phage clones were chemically synthesized. Serological assays that used synthetic peptides were evaluated using serum samples from leprosy patients, household contacts (HC) of leprosy patients, tuberculosis patients and endemic controls (EC). A pool of three peptides identified 73.9% (17/23) of multibacillary (MB) leprosy patients using an enzyme-linked immunosorbent assay (ELISA). These peptides also showed some seroreactivities to the HC and EC individuals. The peptides were not reactive to rabbit polyclonal antisera against the different environmental mycobacteria. The same peptides that were conjugated to the carrier protein bovine serum albumin (BSA) induced the production of antibodies in the mice. The anti-peptide antibodies that were used in the Western blotting analysis of M. leprae crude extracts revealed a single band of approximately 30 kDa in one-dimensional electrophoresis and four 30 kDa isoforms in the two-dimensional gel. The Western blotting data indicated that the three peptides are derived from the same bacterial protein. CONCLUSIONS/SIGNIFICANCE: These new antigens may be useful in the diagnosis of MB leprosy patients. Their potentials as diagnostic reagents must be more extensively evaluated in future studies using a large panel of positive and negative sera. Furthermore, other test approaches using peptides should be assessed to increase their sensitivity and specificity in detecting leprosy patients. We have revealed evidence in support of phage-displayed peptides as promising biotechnological tools for the design of leprosy diagnostic serological assays.


Assuntos
Anticorpos Antibacterianos/sangue , Hanseníase/sangue , Hanseníase/diagnóstico , Mycobacterium leprae , Biblioteca de Peptídeos , Animais , Anticorpos Antibacterianos/química , Bovinos , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Coelhos
4.
BMC Infect Dis ; 13: 42, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23351151

RESUMO

BACKGROUND: An early diagnostic test for detecting infection in leprosy is fundamental for reducing patients' sequelae. The currently used lepromin is not adequate for disease diagnosis and, so far, no antigen to be used in intradermoreaction has proved to be sensitive and specific for that purpose. Aiming at identifying new reagents to be used in skin tests, candidate antigens were investigated. METHODS: Random peptide phage display libraries were screened by using antibodies from leprosy patients in order to identify peptides as diagnostic reagents. RESULTS: Seven different phage clones were identified using purified antibodies pooled from sera of leprosy patients. When the clones were tested with serum samples by ELISA, three of them, 5A, 6A and 1B, allowed detecting a larger number of leprosy patients when compared to controls. The corresponding peptides expressed by selected phage clones were chemically synthesized. A pilot study was undertaken to assess the use of peptides in skin tests. The intradermal challenge with peptides in animals previously sensitized with Mycobacterium leprae induced a delayed-type hypersensitivity with peptide 5A (2/5) and peptide 1B (1/5). In positive controls, there was a 3/5 reactivity for lepromin and a 4/5 reactivity of the sensitized animals with soluble extract of M. leprae. CONCLUSIONS: The preliminary data suggest that may be possible to develop reagents with diagnostic potential based on peptide mimotopes selected by phage display using polyclonal human antibodies.


Assuntos
Antígenos de Bactérias/imunologia , Hanseníase/diagnóstico , Mycobacterium leprae/imunologia , Animais , Técnicas de Visualização da Superfície Celular , Epitopos/imunologia , Feminino , Cobaias , Humanos , Hipersensibilidade Tardia/imunologia , Antígeno de Mitsuda/imunologia , Biblioteca de Peptídeos , Peptídeos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA