Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Infect Genet Evol ; 66: 361-375, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-28843547

RESUMO

An arms race is an appropriate metaphor to use for the interaction of man and Mycobacterium tuberculosis (M.tb) through the millennia. Estimates of the time of infection of modern humans with M.tb often pre-date the Out-of-Africa migration. Humans have adapted to the changing environment during the migration with respect to climate, food sources and encounters with local pathogens. More recently, there has been adaptation to the demographic changes brought about in the majority of the human population by the Neolithic revolution. By chance and/or selection, specific variants in immune defence have arisen in different population groups. These select for M.tb strains more fit to cause disease and be transmitted, sometimes by exploiting defence systems effective on other bacteria. The different selection pressures on the M.tb lineages carried by specific human groups have resulted in a worldwide M.tb population that is geographically structured according to the humans historically found there. A similar structure is seen with pathogens such as M. leprae and Helicobacter pylori. Modern M.tb strains have emerged which may be more fit, such as the Beijing lineage, leading to their rapid spread both in the areas where they arose, and into new areas after recent introduction. The speed at which this is occurring is outpacing coevolution for the time being. By using the results of genome wide and other association studies, as well as admixture mapping and 'natural experiments' in areas where both a number of populations, admixed populations, and a variety of M.tb strains occur, we can investigate the forces that have driven the coevolution of man and M.tb. The diversity of human and bacterial genetic background may be used in the future to discover and target the specific host-pathogen interactions leading to tuberculosis diseases, which suggests the potential for rational design of vaccines and host-directed therapies.


Assuntos
Evolução Biológica , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Animais , Demografia , Suscetibilidade a Doenças , Meio Ambiente , Saúde Global , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Migração Humana , Humanos , Tuberculose/epidemiologia , Tuberculose/genética , Tuberculose/imunologia
2.
BMC Evol Biol ; 6: 95, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17105670

RESUMO

BACKGROUND: The PE and PPE multigene families of Mycobacterium tuberculosis comprise about 10% of the coding potential of the genome. The function of the proteins encoded by these large gene families remains unknown, although they have been proposed to be involved in antigenic variation and disease pathogenesis. Interestingly, some members of the PE and PPE families are associated with the ESAT-6 (esx) gene cluster regions, which are regions of immunopathogenic importance, and encode a system dedicated to the secretion of members of the potent T-cell antigen ESAT-6 family. This study investigates the duplication characteristics of the PE and PPE gene families and their association with the ESAT-6 gene clusters, using a combination of phylogenetic analyses, DNA hybridization, and comparative genomics, in order to gain insight into their evolutionary history and distribution in the genus Mycobacterium. RESULTS: The results showed that the expansion of the PE and PPE gene families is linked to the duplications of the ESAT-6 gene clusters, and that members situated in and associated with the clusters represent the most ancestral copies of the two gene families. Furthermore, the emergence of the repeat protein PGRS and MPTR subfamilies is a recent evolutionary event, occurring at defined branching points in the evolution of the genus Mycobacterium. These gene subfamilies are thus present in multiple copies only in the members of the M. tuberculosis complex and close relatives. The study provides a complete analysis of all the PE and PPE genes found in the sequenced genomes of members of the genus Mycobacterium such as M. smegmatis, M. avium paratuberculosis, M. leprae, M. ulcerans, and M. tuberculosis. CONCLUSION: This work provides insight into the evolutionary history for the PE and PPE gene families of the mycobacteria, linking the expansion of these families to the duplications of the ESAT-6 (esx) gene cluster regions, and showing that they are composed of subgroups with distinct evolutionary (and possibly functional) differences.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Evolução Molecular , Família Multigênica , Mycobacterium tuberculosis/genética , Sequência de Aminoácidos , Genoma Bacteriano , Genômica , Dados de Sequência Molecular , Mycobacterium/genética , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA