Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Fungal Genet Biol ; 100: 52-60, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28215981

RESUMO

Debaryomyces hansenii is a halotolerant and Na+-includer yeast that can be isolated from different food and low-water activity products. It has also been defined as a marine-occurring yeast but key aspects for this salt tolerant behavior are far from being understood. Here, we searched for clues helping to elucidate the basis of this ability. Our results on growth, Rb+ transport, total K+ and Na+ content and vacuolar fragmentation are compatible with a yeast species adapted to cope with salt stress. On the other hand, we confirmed the existence of D. hansenii strategies that are generally observed in sensitive organisms, such as the production of glycerol as a compatible solute and the efficient vacuolar sequestration of Na+. We propose a striking role of D. hansenii vacuoles in the maintenance of constant cytosolic K+ values, even in the presence of extracellular Na+ concentration values more than two orders of magnitude higher than extracellular K+. Finally, the ability to deal with cytosolic Na+ levels significantly higher than those found in S. cerevisiae, shows the existence of important and specific salt tolerance mechanisms and determinants in D. hansenii.


Assuntos
Adaptação Fisiológica/genética , Debaryomyces/metabolismo , Tolerância ao Sal , Vacúolos/metabolismo , Cátions/metabolismo , Debaryomyces/crescimento & desenvolvimento , Glicerol/metabolismo , Concentração de Íons de Hidrogênio , Potássio/metabolismo , Sódio/metabolismo , Vacúolos/química , Vacúolos/genética
2.
J Bacteriol ; 189(13): 4932-43, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17468252

RESUMO

Genetic differentiation by natural selection is readily observed among microbial populations, but a more comprehensive understanding of evolutionary forces, genetic causes, and resulting phenotypic advantages is not often sought. Recently, a surface population of Pseudomonas putida bacteria was shown to evolve rapidly by natural selection of better-adapted variants in a mixed-species biofilm consortium (S. K. Hansen, P. B. Rainey, J. A. Haagensen, and S. Molin, Nature 445:533-536, 2007). Adaptation was caused by mutations in a wapH homolog (PP4943) involved in core lipopolysaccharide biosynthesis. Here we investigate further the biofilm physiology and the phenotypic characteristics of the selected P. putida rough colony variants. The coexistence of the P. putida population in a mixed-species biofilm with Acinetobacter sp. strain C6 is dependent on the benzoate excreted from Acinetobacter during the catabolism of benzyl alcohol, the sole carbon source. Examination of biofilm development and the dynamics of the wild-type consortium revealed that the biofilm environment became oxygen limited, possibly with low oxygen concentrations around Acinetobacter microcolonies. In contrast to P. putida wild-type cells, which readily dispersed from the mixed-species biofilm in response to oxygen starvation, the rough variant cells displayed a nondispersal phenotype. However, in monospecies biofilms proliferating on benzoate, the rough variant (like the wild-type population) dispersed in response to oxygen starvation. A key factor explaining this conditional, nondispersal phenotype is likely to be the acquired ability of the rough variant to coaggregate specifically with Acinetobacter cells. We further show that the P. putida rough variant displayed enhanced production of a cellulose-like polymer as a consequence of the mutation in wapH. The resulting phenotypic characteristics of the P. putida rough variant explain its enhanced fitness and ability to form tight structural associations with Acinetobacter microcolonies.


Assuntos
Acinetobacter/fisiologia , Biofilmes/crescimento & desenvolvimento , Pseudomonas putida/fisiologia , Acinetobacter/genética , Acinetobacter/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Biofilmes/efeitos dos fármacos , Mutação , Oxigênio/farmacologia , Fenótipo , Polissacarídeos Bacterianos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Seleção Genética
3.
Proc Natl Acad Sci U S A ; 103(22): 8487-92, 2006 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-16687478

RESUMO

In many human infections, hosts and pathogens coexist for years or decades. Important examples include HIV, herpes viruses, tuberculosis, leprosy, and malaria. With the exception of intensively studied viral infections such as HIV/AIDs, little is known about the extent to which the clonal expansion that occurs during long-term infection by pathogens involves important genetic adaptations. We report here a detailed, whole-genome analysis of one such infection, that of a cystic fibrosis (CF) patient by the opportunistic bacterial pathogen Pseudomonas aeruginosa. The bacteria underwent numerous genetic adaptations during 8 years of infection, as evidenced by a positive-selection signal across the genome and an overwhelming signal in specific genes, several of which are mutated during the course of most CF infections. Of particular interest is our finding that virulence factors that are required for the initiation of acute infections are often selected against during chronic infections. It is apparent that the genotypes of the P. aeruginosa strains present in advanced CF infections differ systematically from those of "wild-type" P. aeruginosa and that these differences may offer new opportunities for treatment of this chronic disease.


Assuntos
Adaptação Fisiológica/genética , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Doença Crônica , Fibrose Cística/patologia , Proteínas de Ligação a DNA/genética , Genoma Bacteriano/genética , Humanos , Dados de Sequência Molecular , Mutação/genética , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/isolamento & purificação , Seleção Genética , Fatores de Tempo , Transativadores/genética
4.
J Bacteriol ; 177(23): 6874-80, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7592481

RESUMO

The ability to respond to osmotic stress by osmoregulation is common to virtually all living cells. Gram-negative bacteria such as Escherichia coli and Salmonella typhimurium can achieve osmotolerance by import of osmoprotectants such as proline and glycine betaine by an import system encoded in an operon called proU with genes for proteins ProV, ProW, and ProX. In this report, we describe the discovery of a proU-type locus in the gram-positive bacterium Bacillus subtilis. It contains four open reading frames (ProV, ProW, ProX, and ProZ) with homology to the gram-negative ProU proteins, with the B. subtilis ProV, ProW, and ProX proteins having sequence homologies of 35, 29, and 17%, respectively, to the E. coli proteins. The B. subtilis ProZ protein is similar to the ProW protein but is smaller and, accordingly, may fulfill a novel role in osmoprotection. The B. subtilis proU locus was discovered while exploring the chromosomal sequence upstream from the spa operon in B. subtilis LH45, which is a subtilin-producing mutant of B. subtilis 168. B. subtilis LH45 had been previously constructed by transformation of strain 168 with linear DNA from B. subtilis ATCC 6633 (W. Liu and J. N. Hansen, J. Bacteriol. 173:7387-7390, 1991). Hybridization experiments showed that LH45 resulted from recombination in a region of homology in the proV gene, so that the proU locus in LH45 is a chimera between strains 168 and 6633. Despite being a chimera, this proU locus was fully functional in its ability to confer osmotolerance when glycine betaine was available in the medium. Conversely, a mutant (LH45 deltaproU) in which most of the proU locus had been deleted grew poorly at high osmolarity in the presence of glycine betaine. We conclude that the proU-like locus in B. subtilis LH45 is a gram-positive counterpart of the proU locus in gram-negative bacteria and probably evolved prior to the evolutionary split of prokaryotes into gram-positive and gram-negative forms.


Assuntos
Sistemas de Transporte de Aminoácidos , Antibacterianos/biossíntese , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Óperon , Peptídeos , Equilíbrio Hidroeletrolítico/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/fisiologia , Bacteriocinas , Sequência de Bases , Betaína/metabolismo , Escherichia coli/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Pressão Osmótica , Prolina/metabolismo , Recombinação Genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA