Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Zebrafish ; 14(2): 187-194, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28192066

RESUMO

The zebrafish larval stage is a critical moment due to high mortality rates associated with inadequate supplies of nutritional requirements. Larval feeding has important challenges associated with such factors as small mouth gape (≈100 µm), the low activity of digestive enzymes, and the intake of live food. A common zebrafish live food at the onset of exogenous feeding is rotifers, mainly Brachionus plicatilis. These rotifers should be fed with other microorganisms such as microalgae or yeast, mostly from the Saccharomyces genus. In the laboratory, the culture of microalgae is more expensive than the culture of yeast. The aim of this study was to evaluate the performance of Debaryomyces hansenii as a diet for rotifers in comparison to a microalgae-based diet (Rotigrow®). To achieve this aim, we assessed the rotifer total protein content, the rotifers fatty acid profile, zebrafish larval growth performance, the expression of key growth, and endocrine appetite regulation genes. The total protein and fatty acids content were similar in both rotifer cultures, averaging 35% of dry matter (DM) and 18% of DM, respectively. Interestingly, the fatty acids profile showed differences between the two rotifer cultures: omega-3 fatty acids were only observed in the Microalgae/rotifer, whereas, omega-6 fatty acids presented similar levels in both rotifer cultures. No differences were observed in the larval body length distribution or mortalities between the rotifer cultures. However, gh, igf-1, and cck gene expression showed significantly higher upregulation in zebrafish fed the Microalgae/rotifer diet compared with those fed the Debaryomyces/rotifer diet. In conclusion, D. hansenii could be an alternative diet for rotifer used as a live food in zebrafish larvae at the onset of exogenous feeding. The gene responses observed in this work open up the opportunity to study the effect of omega-3 supply on growth regulation in zebrafish.


Assuntos
Ascomicetos/fisiologia , Rotíferos/fisiologia , Peixe-Zebra/fisiologia , Ração Animal , Animais , Ciência dos Animais de Laboratório , Larva/fisiologia
2.
PLoS One ; 12(1): e0169621, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28060946

RESUMO

The oleaginous yeast Debaryomyces hansenii is a good model to understand molecular mechanisms involved in halotolerance because of its impressive ability to survive under a wide range of salt concentrations. Several cellular adaptations are implicated in this response, including the presence of a cyanide-insensitive ubiquinol oxidase (Aox). This protein, which is present in several taxonomical orders, has been related to different stress responses. However, little is known about its role in mitochondria during transitions from low to high saline environments. In this report, we analyze the effects of Aox in shifts from low to high salt concentrations in the culture media. At early stages of a salt insult, we observed that this protein prevents the overflow of electrons on the mitochondrial respiratory chain, thus, decreasing the production of reactive oxygen species. Interestingly, in the presence of high osmolite concentrations, Aox activity is able to sustain a stable membrane potential when coupled to complex I, despite a compromised cytochrome pathway. Taken together, our results suggest that under high osmolarity conditions Aox plays a critical role regulating mitochondrial physiology.


Assuntos
Ascomicetos/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Concentração Osmolar , Oxirredutases , Proteínas de Plantas , Respiração Celular , Sobrevivência Celular , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Potencial da Membrana Mitocondrial , Oxirredução , Estresse Fisiológico
3.
Int J Food Microbiol ; 191: 1-9, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25218463

RESUMO

Various molecular approaches have been applied as culture-independent techniques to monitor wine fermentations over the last decade. Among them, those based on RNA detection have been widely used for yeast cell detection, assuming that RNA only exists in live cells. Fluorescence in situ hybridization (FISH) targeting intracellular rRNA is considered a promising technique for the investigation of wine ecology. For the present study, we applied the FISH technique in combination with epifluorescence microscopy and flow cytometry to directly quantify populations of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris during alcoholic fermentations. A new specific probe that hybridizes with eight species of Hanseniaspora genus and a second probe specific for Starm. bacillaris were designed, and the conditions for their application to pure cultures, mixed cultures, and wine samples were optimized. Single and mixed fermentations were performed with natural, concentrated must at two different temperatures, 15 °C and 25 °C. The population dynamics revealed that the Sacch. cerevisiae population increased to 10(7)-10(8)cells/ml during all fermentations, whereas H. uvarum and Starm. bacillaris tended to increase in single fermentations but remained at levels similar to their inoculations at 10(6)cells/ml in mixed fermentations. Temperature mainly affected the fermentation duration (slower at the lower temperature) but did not affect the population sizes of the different species. The use of these probes in natural wine fermentations has been validated.


Assuntos
Ascomicetos/fisiologia , Fermentação , Citometria de Fluxo/normas , Microbiologia de Alimentos/métodos , Hanseniaspora/fisiologia , Hibridização in Situ Fluorescente/normas , Saccharomyces cerevisiae/fisiologia , Ascomicetos/genética , Hanseniaspora/genética , RNA Ribossômico , Saccharomyces cerevisiae/genética , Temperatura , Vinho/microbiologia
4.
Appl Biochem Biotechnol ; 129-132: 461-75, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16915662

RESUMO

The combined effects of inhibitors present in lignocellulosic hydrolysates was studied using a multivariate statistical approach. Acetic acid (0-6 g/L), formic acid (0-4.6 g/L), and hydroquinone (0-3 g/L) were tested as model inhibitors in synthetic media containing a mixture of glucose, xylose, and arabinose simulating concentrated hemicellulosic hydrolysates. Inhibitors were consumed sequentially (acetic acid, formic acid, and hydroquinone), alongside to the monosaccharides (glucose, xylose, and arabinose). Xylitol was always the main metabolic product. Additionally, glycerol, ethanol, and arabitol were also obtained. The inhibitory action of acetic acid on growth, on glucose consumption and on all product formation rates was found to be significant (p < or = 0.05), as well as formic acid inhibition on xylose consumption and biomass production. Hydroquinone negatively affected biomass productivity and yield, but it significantly increased xylose consumption and xylitol productivity. Hydroquinone interactions, either with acetic or formic acid or with both, are also statistically significant. Hydroquinone seems to partially lessen the acetic acid and amplify formic acid effects. The results clearly indicate that the interaction effects play an important role on the xylitol bioprocess.


Assuntos
Ácido Acético/administração & dosagem , Ascomicetos/fisiologia , Formiatos/administração & dosagem , Glucose/metabolismo , Hidroquinonas/administração & dosagem , Polissacarídeos/metabolismo , Xilitol/biossíntese , Ascomicetos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Fermentação/efeitos dos fármacos , Taxa de Depuração Metabólica/efeitos dos fármacos , Modelos Biológicos
5.
Mar Biotechnol (NY) ; 8(3): 246-59, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16532366

RESUMO

Viable cell counts and/or in situ hybridization were used to determine whether the probionts Vibrio midae SY9, Cryptococcus sp. SS1, and Debaryomyces hansenii AY1 can colonize the gastrointestinal tract of the South African abalone Haliotis midae. The number of culturable probiotic cells reisolated from H. midae fed probiotic-supplemented feed for 3 weeks ranged from 10(6) to 10(7) cfu/g gut material. A significant decrease (P < 0.05) in probiont numbers 2 days after feeding the probiotic-supplemented feed had been halted correlated with a significant decrease (P < 0.05) in intestinal protease and amylase activity. There was a positive correlation between Cryptococcus sp. SS1 and amylase activity (r2= 0.681) and V. midae SY9.8 and protease activity (r2= 0.711) in the H. midae intestine. Although culturable probionts were isolated from abalone that had not been fed probiotic-supplemented feed for a 2-week period, the drop in the number of probiotic cells colonizing the abalone digestive tract 2 days after feeding with the probiotic-supplemented feed had been halted indicates that farmed abalone should be fed probiotic-supplemented feed at least every second day for maximum benefit.


Assuntos
Ascomicetos/fisiologia , Cryptococcus/fisiologia , Moluscos/microbiologia , Vibrio/fisiologia , Ração Animal/microbiologia , Animais , Aquicultura , Trato Gastrointestinal/microbiologia , Probióticos
6.
Gene ; 369: 27-34, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16303259

RESUMO

Debaryomyces hansenii is a yeast species often found in salty environments. Its genome sequence is known completely, but the mechanisms behind its halotolerance are poorly understood. In the D. hansenii genome, there is a gene strongly homologous to the Saccharomyces cerevisiae NHA1 gene (encoding a plasma membrane Na+/H+ antiporter). We isolated this DhNHA1 gene from two D. hansenii strains (CBS 767 and CBS 1793) differing in their osmotolerance. Both DhNHA1 alleles were heterologously expressed in a S. cerevisiae strain lacking its own systems for the efflux of alkali metal cations (BW31a, ena1-4delta nha1delta). D. hansenii Na+/H+ antiporters were localized in the plasma membrane of BW31a cells, their presence increased BW31a tolerance to sodium, potassium, lithium and also rubidium. Measurements of Na+ and K+ efflux from S. cerevisiae cells expressing DhNHA1 alleles show that the D. hansenii antiporters efficiently transported both cations out of cells. The sodium and potassium transport activity of Nha1 antiporters from both D. hansenii strains was almost identical, indicating that plasma membrane antiporter activity is not one of the factors determining the different levels of halotolerance in the two strains.


Assuntos
Ascomicetos/genética , Proteínas de Transporte de Cátions/genética , Genes Fúngicos , Proteínas de Membrana/genética , Metais/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Trocadores de Sódio-Hidrogênio/genética , Adaptação Fisiológica , Sequência de Aminoácidos , Ascomicetos/fisiologia , Sequência de Bases , Cátions/metabolismo , DNA Fúngico , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Plasmídeos , Cloreto de Sódio , Especificidade por Substrato
7.
FEMS Yeast Res ; 5(8): 693-701, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15943004

RESUMO

The yeast Debaryomyces hansenii is usually found in salty environments such as the sea and salted food. It is capable of accumulating sodium without being intoxicated even when potassium is present at low concentration in the environment. In addition, sodium improves growth and protects D. hansenii in the presence of additional stress factors such as high temperature and extreme pH. An array of advantageous factors, as compared with Saccharomyces cerevisiae, is putatively involved in the increased halotolerance of D. hansenii: glycerol, the main compatible solute, is kept inside the cell by an active glycerol-Na+ symporter; potassium uptake is not inhibited by sodium; sodium protein targets in D. hansenii seem to be more resistant. The whole genome of D. hansenii has been sequenced and is now available at http://cbi.labri.fr/Genolevures/ and, so far, no genes specifically responsible for the halotolerant behaviour of D. hansenii have been found.


Assuntos
Ascomicetos/fisiologia , Ascomicetos/genética , Ascomicetos/metabolismo , Transporte Biológico , Cátions Monovalentes , Glicerol/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Transporte de Íons , Potássio/metabolismo , Cloreto de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA