Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
BMC Infect Dis ; 19(1): 52, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642265

RESUMO

BACKGROUND: Leprosy is an ideal human disease to study T cell regulation as patients show correlation between cytokine skewed Th1-Th2 responses and clinical forms of the disease. The Role of transcription factors on the modulation of Th1 and Th2 responses by M. leprae antigens has not been adequately studied. In the present study, we studied the effect of M. leprae antigens on transcription factors STAT-4, STAT-6 and CREB and their correlation with Th1/Th2 cell mediated immune responses in leprosy. METHODS: Leprosy patients of both categories of tuberculoid leprosy (BT/TT) and lepromatous leprosy (BL/LL) were selected from the OPD of NJ1L & OMD, (ICMR), Agra and healthy individuals (H) were chosen from the staff and students working in the institute. Peripheral blood mononuclear cells (PBMCs) of the study subjects were stimulated with M. leprae antigens (WCL, MLSA, and PGL-1). Sandwich ELISA was done in the culture supernatants of healthy and leprosy patients to detect IL-4, IL-10 and IFN-γ. Further, expression of IFN-γ and IL-4 and activation of STAT4, STAT6 and CREB transcription factors in CD4+ T cell with or without stimulation of M. leprae antigens was investigated by flow cytometry. RESULTS: Lepromatous leprosy patients showed significantly lower IFN-γ and higher IL-4 levels in culture supernatant and significantly low expression of IFN-γ and higher expression of IL-4 by CD4+ T cells than healthy individuals with or without antigenic stimulation. Antigenic stimulation significantly increased IL-10 in BL/LL patients but not in BT/TT patients or healthy individuals. PGL-1 stimulation led to significantly higher activation of STAT-6 in BT/TT and BL/LL patients in comparison to healthy individuals. All the three antigens led to activation of CREB in healthy and BT/TT patients but not in BL/LL patients. CONCLUSION: Our findings show that M. leprae antigens differentially modulate activation of T cell transcription factors STAT-4/STAT-6 and CREB. These transcription factors are well known to regulate Th1 and Th2 mediated immune response which in turn could play vital role in the clinical manifestations of leprosy. These observations may help to determine how these T cell transcription factors affect the development of immune dysfunction and whether these new pathways have a role in immunomodulation in intracellular diseases like leprosy and TB.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Fator de Transcrição STAT4/metabolismo , Fator de Transcrição STAT6/metabolismo , Adulto , Antígenos de Bactérias/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Citocinas/metabolismo , Humanos , Hanseníase/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/microbiologia , Pessoa de Meia-Idade , Mycobacterium leprae/patogenicidade , Fator de Transcrição STAT4/imunologia , Fator de Transcrição STAT6/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/metabolismo
2.
Immunology ; 100(2): 217-24, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10886398

RESUMO

Immune responses can be classified, according to the predominant cytokines involved, into type 1 (featuring interferon-gamma, IFN-gamma) and type 2 (featuring interleukin-4, IL-4); imbalance between type 1 and type 2 cytokine compartments has been implicated in many human diseases. Levamisole is a drug with an unknown mode of action that has been used to boost immunity in infectious diseases including leprosy, and in some cancers. To test the hypothesis that levamisole acts by inducing a shift to a type 1 immune response, we used Brown Norway (BN) rats, which are markedly biased to type 2 responses. BN rats treated with levamisole showed a dose-dependent rise in serum IFN-gamma and fall in serum immunoglobulin E (IgE) level. Detailed analysis of cytokine gene expression showed upregulation of IFN-gamma and downregulation of IL-4 messenger RNA. This coincided with marked upregulation of IL-18, a recently characterized cytokine with potent activity in stimulating IFN-gamma production. IL-12 was not induced. Further, the type 2 response induced in BN rats by mercuric chloride was markedly attenuated when rats were pretreated with levamisole: there was a 2-log reduction in maximum serum IgE level and marked attenuation of IL-4 gene upregulation. These data indicate that levamisole acts by resetting the immune balance towards a type 1 response via induction of IL-18. Our findings provide a direction for development of more specific immunomodulating therapy.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antinematódeos/farmacologia , Interleucina-18/metabolismo , Levamisol/farmacologia , Animais , Relação Dose-Resposta Imunológica , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoglobulina E/sangue , Interferon gama/sangue , Interferon gama/genética , Interleucina-18/genética , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Cloreto de Mercúrio/antagonistas & inibidores , Ratos , Ratos Endogâmicos BN , Células Th2/efeitos dos fármacos , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA