Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 66(1): 108-118, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30359481

RESUMO

In this study, a bacterial cellulose (BC) producing strain was isolated from Kombucha tea and identified as Komagataeibacter hansenii JR-02 by morphological, physiological, and biochemical characterization and 16S rRNA sequence. Then, the media components and culture conditions for BC production were optimized. Result showed that the highest BC yield was 3.14 ± 0.22 and 8.36 ± 0.19 g/L after fermentation for 7 days under shaking and static cultivation, respectively. Moreover, it was interesting that JR-02 could produce BC in nitrogen-free medium with the highest yield of 0.76 ± 0.06 g/L/7days, and the possible nitrogen fixation gene nifH was cloned from its genomic DNA. The BC produced by JR-02 was type-I cellulose with high crystallinity and thermodynamic stability, which was revealed from Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis methods. The crystallinity of static and shaking cultured BC were 91.76% and 90.69%, respectively. The maximum rate of weight loss of static and shaking BC occurred at temperature of approximately 373.1 °C and 369.1 °C, respectively. Overall, these results indicated that K. hansenii JR-02 had great potential to produce high crystallinity type-I BC in manufacture.


Assuntos
Acetobacteraceae , Proteínas de Bactérias , Celulose/biossíntese , Chá de Kombucha/microbiologia , Oxirredutases , Acetobacteraceae/genética , Acetobacteraceae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo
2.
FEMS Microbiol Ecol ; 93(5)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430940

RESUMO

Kombucha, historically an Asian tea-based fermented drink, has recently become trendy in Western countries. Producers claim it bears health-enhancing properties that may come from the tea or metabolites produced by its microbiome. Despite its long history of production, microbial richness and dynamics have not been fully unraveled, especially at an industrial scale. Moreover, the impact of tea type (green or black) on microbial ecology was not studied. Here, we compared microbial communities from industrial-scale black and green tea fermentations, still traditionally carried out by a microbial biofilm, using culture-dependent and metabarcoding approaches. Dominant bacterial species belonged to Acetobacteraceae and to a lesser extent Lactobacteriaceae, while the main identified yeasts corresponded to Dekkera, Hanseniaspora and Zygosaccharomyces during all fermentations. Species richness decreased over the 8-day fermentation. Among acetic acid bacteria, Gluconacetobacter europaeus, Gluconobacter oxydans, G. saccharivorans and Acetobacter peroxydans emerged as dominant species. The main lactic acid bacteria, Oenococcus oeni, was strongly associated with green tea fermentations. Tea type did not influence yeast community, with Dekkera bruxellensis, D. anomala, Zygosaccharomyces bailii and Hanseniaspora valbyensis as most dominant. This study unraveled a distinctive core microbial community which is essential for fermentation control and could lead to Kombucha quality standardization.


Assuntos
Fermentação/fisiologia , Chá de Kombucha/microbiologia , Microbiota/genética , Ácido Acético/metabolismo , Acetobacter/classificação , Acetobacter/genética , Acetobacter/isolamento & purificação , Técnicas de Tipagem Bacteriana , Biofilmes/crescimento & desenvolvimento , Dekkera/classificação , Dekkera/genética , Dekkera/isolamento & purificação , Hanseniaspora/classificação , Hanseniaspora/genética , Hanseniaspora/isolamento & purificação , Ácido Láctico/metabolismo , Técnicas de Tipagem Micológica , Oenococcus/classificação , Oenococcus/genética , Oenococcus/isolamento & purificação , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Zygosaccharomyces/classificação , Zygosaccharomyces/genética , Zygosaccharomyces/isolamento & purificação
3.
Waste Manag ; 62: 211-221, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28223076

RESUMO

In most modern technologies such as flat screens, highly effective magnets and lasers, as well as luminescence phosphors, Rare Earth Elements (REE) are used. Unfortunately no environmentally friendly recycling process exists so far. In comparison to other elements the interaction of microorganisms with REE has been studied to a less extent. However, as REE are ubiquitously present in nature it can be assumed that microorganisms play an important role in the biogeochemistry of REE. This study investigates the potential of organic acid-producing microbes for extracting REE from industrial waste. In Germany, 175 tons of fluorescent phosphor (FP) are collected per year as a distinct fraction from the recycling of compact fluorescent lamps. Because the FP contains about 10% of REE-oxides bound in the so-called triband dyes it is a readily accessible secondary resource of REE. Using the symbiotic mixed culture Kombucha, consisting of yeasts and acetic acid bacteria, REE were leached at a significant rate. The highest leaching-rates were observed in shake cultures using the entire Kombucha-consortium or its supernatant as leaching agent compared to experiments using the isolates Zygosaccharomyces lentus and Komagataeibacter hansenii as leaching organisms. During the cultivation, the pH decreased as a result of organic acid production (mainly acetic and gluconic acid). Thus, the underlying mechanism of the triband dye solubilisation is probably linked to the carboxyl-functionality or a proton excess. In accordance with the higher solubility of REE-oxides compared to REE-phosphates and -aluminates, the red dye Y2O3:Eu2+ containing relatively expensive REE was shown to be preferentially solubilized. These results show that it is possible to dissolve the REE-compounds of FP with the help of microbial processes. Moreover, they provide the basis for the development of an eco-friendly alternative to the currently applied methods that use strong inorganic acids or toxic chemicals.


Assuntos
Biodegradação Ambiental , Resíduo Eletrônico , Fungos/fisiologia , Metais Terras Raras/análise , Eliminação de Resíduos/métodos , Alemanha , Chá de Kombucha
4.
Appl Microbiol Biotechnol ; 101(3): 1003-1012, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27678116

RESUMO

Isolate B17 from Kombucha was estimated to be an efficient producer of bacterial cellulose (BC). The isolate was deposited under the number P 1463 and identified as Komagataeibacter rhaeticus by comparing a generated amplified fragment length polymorphism (AFLP™) DNA fingerprint against a reference database. Static cultivation of the K. rhaeticus strain P 1463 in Hestrin and Schramm (HS) medium resulted in 4.40 ± 0.22 g/L BC being produced, corresponding to a BC yield from glucose of 25.30 ± 1.78 %, when the inoculum was made with a modified HS medium containing 10 g/L glucose. Fermentations for 5 days using media containing apple juice with analogous carbon source concentrations resulted in 4.77 ± 0.24 g/L BC being synthesised, corresponding to a yield from the consumed sugars (glucose, fructose and sucrose) of 37.00 ± 2.61 %. The capacity of K. rhaeticus strain P 1463 to synthesise BC was found to be much higher than that of two reference strains for cellulose production, Komagataeibacter xylinus DSM 46604 and Komagataeibacter hansenii DSM 5602T, and was also considerably higher than that of K. hansenii strain B22, isolated from another Kombucha sample. The BC synthesised by K. rhaeticus strain P 1463 after 40 days of cultivation in HS medium with additional glucose supplemented to the cell culture during cultivation was shown to have a degree of polymerization of 3300.0 ± 122.1 glucose units, a tensile strength of 65.50 ± 3.27 MPa and a length at break of 16.50 ± 0.83 km. For the other strains, these properties did not exceed 25.60 ± 1.28 MPa and 15.20 ± 0.76 km.


Assuntos
Celulose/biossíntese , Fermentação , Gluconacetobacter/metabolismo , Chá de Kombucha/microbiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Carbono/metabolismo , Celulose/metabolismo , Meios de Cultura/química , Gluconacetobacter/classificação , Gluconacetobacter/crescimento & desenvolvimento , Gluconacetobacter/isolamento & purificação , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA