Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Mais filtros


Intervalo de ano de publicação
1.
Int J Food Microbiol ; 371: 109636, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35447561

RESUMO

Autochthonous yeasts associated with pineapple fermentation were isolated and their fermentation behaviours were investigated for development of specific culture in pineapple winemaking. Autochthonous yeast isolates, Saccharomycodes ludwigii and Hanseniaspora uvarum, were selected due to their generated products of alcohol and 2-phenylethyl acetate, respectively. The fermentation kinetic parameters of selected autochthonous yeasts as single and co-cultures in chaptalized pineapple juice were investigated comparing to commercial Saccharomyces cerevisiae. The ethanol production rate of S'codes ludwigii (0.104%(v/v)/h) during the initial stage of fermentation was relatively slower compared to those of S. cerevisiae (0.129%(v/v)/h) but increased during middle through final stages with similar ethanol content to the commercial S. cerevisiae (~12%(v/v)). In pineapple juice, fructose was firstly assimilated, S'codes ludwigii (K = 0.405) and S. cerevisiae (K = 0.552), while glucose was secondly used, S'codes ludwigii (K = 0.281) and S. cerevisiae (K = 0.217) for first-order kinetic model. In co-cultures, the two isolated strains displayed synergistic behaviours during fermentation. S'codes ludwigii supported the growth of H. uvarum so that it generated more desirable volatile organic compounds (VOCs) at an early stage. Interestingly, the VOCs could not be produced in co-cultures of H. uvarum with the commercial strains. Then, S'codes ludwigii further completed the alcoholic fermentation through final stage. The fermentation performances of co-cultured autochthonous yeasts demonstrated a new approach for successful pineapple winemaking over S. cerevisiae. In addition, growth kinetics and fermentation behaviour, as observed in this study, could be a key information in development of potential substrates and strains for future alcoholic fermentation.


Assuntos
Ananas , Vinho , Etanol/análise , Fermentação , Cinética , Saccharomyces cerevisiae , Vinho/análise , Leveduras
2.
J Leukoc Biol ; 110(4): 693-710, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33404106

RESUMO

The inflammatory and anti-inflammatory Mϕs have been implicated in many diseases including rheumatoid arthritis, multiple sclerosis, and leprosy. Recent studies suggest targeting Mϕ function and activation may represent a potential target to treat these diseases. Herein, we investigated the effect of second mitochondria-derived activator of caspases (SMAC) mimetics (SMs), the inhibitors of apoptosis (IAPs) proteins, on the killing of human pro- and anti-inflammatory Mϕ subsets. We have shown previously that human monocytes are highly susceptible whereas differentiated Mϕs (M0) are highly resistant to the cytocidal abilities of SMs. To determine whether human Mϕ subsets are resistant to the cytotoxic effects of SMs, we show that M1 Mϕs are highly susceptible to SM-induced cell death whereas M2a, M2b, and M2c differentiated subsets are resistant, with M2c being the most resistant. SM-induced cell death in M1 Mϕs was mediated by apoptosis as well as necroptosis, activated both extrinsic and intrinsic pathways of apoptosis, and was attributed to the IFN-γ-mediated differentiation. In contrast, M2c and M0 Mϕs experienced cell death through necroptosis following simultaneous blockage of the IAPs and the caspase pathways. Overall, the results suggest that survival of human Mϕs is critically linked to the activation of the IAPs pathways. Moreover, agents blocking the cellular IAP1/2 and/or caspases can be exploited therapeutically to address inflammation-related diseases.


Assuntos
Apoptose , Inibidores de Caspase/farmacologia , Polaridade Celular , Macrófagos/citologia , Oligopeptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Polaridade Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Janus Quinases/metabolismo , Cinética , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Necroptose/efeitos dos fármacos , Fenótipo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
PLoS One ; 15(5): e0233285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32453779

RESUMO

Fermentation by microorganisms is a key step in the production of traditional food products such as bread, cheese, beer and wine. In these fermentative ecosystems, microorganisms interact in various ways, namely competition, predation, commensalism and mutualism. Traditional wine fermentation is a complex microbial process performed by Saccharomyces and non-Saccharomyces (NS) yeast species. To better understand the different interactions occurring within wine fermentation, isolated yeast cultures were compared with mixed co-cultures of one reference strain of S. cerevisiae with one strain of four NS yeast species (Metschnikowia pulcherrima, M. fructicola, Hanseniaspora opuntiae and H. uvarum). In each case, we studied population dynamics, resource consumed and metabolites produced from central carbon metabolism. This phenotyping of competition kinetics allowed us to confirm the main mechanisms of interaction between strains of four NS species. S. cerevisiae competed with H. uvarum and H. opuntiae for resources although both Hanseniaspora species were characterized by a strong mortality either in mono or mixed fermentations. M. pulcherrima and M. fructicola displayed a negative interaction with the S. cerevisiae strain tested, with a decrease in viability in co-culture. Overall, this work highlights the importance of measuring specific cell populations in mixed cultures and their metabolite kinetics to understand yeast-yeast interactions. These results are a first step towards ecological engineering and the rational design of optimal multi-species starter consortia using modeling tools. In particular the originality of this paper is for the first times to highlight the joint-effect of different species population dynamics on glycerol production and also to discuss on the putative role of lipid uptake on the limitation of some non-conventional species growth although interaction processes.


Assuntos
Fermentação , Hanseniaspora/metabolismo , Metschnikowia/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Dióxido de Carbono/metabolismo , Fermentação/fisiologia , Frutose/metabolismo , Sucos de Frutas e Vegetais/microbiologia , Glucose/metabolismo , Cinética , Nitrogênio/metabolismo , Vitis
4.
ACS Comb Sci ; 22(4): 172-183, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32125826

RESUMO

Combinatorial techniques can accelerate the discovery and development of polymeric nanodelivery devices by pairing high-throughput synthesis with rapid materials characterization. Biodegradable polyanhydrides demonstrate tunable release, high cellular internalization, and dose sparing properties when used as nanodelivery devices. This nanoparticle platform shows promising potential for small molecule drug delivery, but the pace of understanding and rational design of these nanomedicines is limited by the low throughput of conventional characterization. This study reports the use of a high-throughput method to synthesize libraries of a newly synthesized, rapidly eroding polyanhydride copolymer based on 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) and sebacic acid (SA) monomers. The high-throughput method enabled efficient screening of copolymer microstructure, revealing weak block-type and alternating architectures. The high-throughput method was adapted to synthesize nanoparticle libraries encapsulating hydrophobic model drugs. Drug release from these nanoparticles was rapid, with a majority of the payload released within 3 days. Drug release was dramatically slowed at acidic pH, which could be useful for oral drug delivery. Rhodamine B (RhoB) release kinetics generally followed patterns of polymer erosion kinetics, while Coomassie brilliant blue (CBB) released the fastest from the slowest degrading polymer chemistry and vice versa. These differences in trends between copolymer chemistry and release kinetics were hypothesized to arise from differences in mixing thermodynamics. A high-throughput method was developed to synthesize polymer-drug film libraries and characterize mixing thermodynamics by melting point depression. Rhodamine B had a negative χ for all copolymers with <30 mol % CPTEG tested, indicating a tendency toward miscibility. By contrast, CBB χ increased, eventually becoming positive near 15:85 CPTEG:SA, with increasing CPTEG content. This indicates an increasing tendency toward phase separation in CPTEG-rich copolymers. These in vitro results screening polymer-drug interactions showed good agreement with in silico predictions from Hansen solubility parameter estimation and were able to explain the observed differences in model drug release trends.


Assuntos
Técnicas de Química Combinatória , Ensaios de Triagem em Larga Escala , Nanopartículas/química , Polianidridos/química , Polianidridos/síntese química , Benzenossulfonatos/química , Liberação Controlada de Fármacos , Cinética , Tamanho da Partícula , Rodaminas/química , Propriedades de Superfície
5.
Ultrason Sonochem ; 63: 104952, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31945563

RESUMO

The present work studies the impact of low-intensity ultrasound (US) on Hanseniaspora sp. yeast fermentations. The effect of pulse duration and growth phase on US application was first evaluated using a synthetic medium. The optimal conditions were then applied to apple juice US-assisted fermentation. An US treatment chamber was first designed to allow the recycling of the culture medium. The optimal US pulse duration on the yeast growth rate was of 0.5 s followed by 6 s rest period, and during 6 h of both Lag and Log phases. These US parameters led to a faster consumption of glucose in the medium during the fermentation, compared to the untreated culture. The impact of US was also depending on the growth phase, showing higher sensitivity of the yeast to US during the Lag phase rather than the Log phase. US-assisted fermentation of apple juice showed a significant increase in biomass growth and glucose consumption, along with a significant decrease in the ethanol yield. The fastest growth kinetic (by 52%), and the highest ethanol reduction (by 0.55% (v, v)) were obtained for the treatment during the first 12 h of fermentation, thereby, the stationary phase was reached faster, and the maximum biomass growth rate was 10 folds higher compared to the untreated culture. The results obtained in this study demonstrated the promising efficiency of US-assisted fermentation in stimulating the biomass growth and reducing the ethanol content in alcoholic beverages.


Assuntos
Bebidas , Fermentação , Malus/metabolismo , Sonicação , Cinética
6.
J Biomater Sci Polym Ed ; 31(1): 1-19, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31526302

RESUMO

This study investigated the potential of delivering an anti-glaucoma drug using commercial silicone hydrogel (SiHy) contact lenses. The moderately hydrophobic drug latanoprost was rapidly loaded in 4 min by swelling contact lenses in a solution of the drug in n-propanol. A fraction of the drug was radiolabeled, thus allowing measurement of the uptake and subsequent release of drug into artificial tear fluid. Three questions were addressed: (1) how much drug can be loaded into each type of lens, (2) how fast is drug release, and (3) how are these values related to the contact lens chemistry. The results showed that much more latanoprost could be loaded into SiHy lenses than a conventional contact lens of poly(hydroxyethyl methacrylate). The drug uptake correlated with the amount of swelling in n-propanol, with Galyfilcon lenses having the greatest swelling and highest drug uptake. The drug release from the SiHy lenses occurred over days, whereas the conventional lens released nearly all drug in a burst over a few hours. To examine correlations between lens chemistry, drug chemistry and uptake, and solvent chemistry, the Hansen solubility parameters were calculated using estimates of contact lens chemistry. These results showed that drug uptake in SiHy lenses correlated with favorable solubility parameter interactions between the n-propanol and the lens material, but did not correlate with interactions between the drug and the lens materials.


Assuntos
Lentes de Contato Hidrofílicas , Latanoprosta/química , Liberação Controlada de Fármacos , Cinética , Solventes/química
7.
J Mater Chem B ; 7(42): 6539-6555, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31584603

RESUMO

To unveil the effect of electrolyte concentration, pH and polymer addition on Tween 80 stabilized nanostructured lipid carriers (NLCs, based on dialkyldimethylammonium bromides DxDAB and Na oleate), an in-depth scattering analysis was performed. Dynamic and static light scattering (DLS/SLS) and small-angle neutron scattering (SANS) techniques along with zeta potential studies were exploited to understand the structural evolution and physical stability of NLCs. In these experiments, we varied the salt concentration, pH, and the admixture of Pluronic F127 in order to elucidate their effect on NLC morphologies. In most cases, two populations of different sizes are present which differ by one order of magnitude. The antileprosy drugs (ALD) Rifampicin and Dapsone were encapsulated in NLCs and the vector properties were assessed for a series of DxDAB (where x = 12, 14, 16 and 18) NLCs. The influence of composition on the entrapment and release behavior of NLCs was investigated: The size of NLCs correlates with the release rate of the incorporated drug. The interaction of drug-loaded NLCs with bovine serum albumin was studied to understand the release of ALD in the plasma.


Assuntos
Dapsona/farmacologia , Portadores de Fármacos/química , Hansenostáticos/farmacologia , Nanopartículas/química , Compostos de Amônio Quaternário/química , Rifampina/farmacologia , Animais , Bovinos , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Cinética , Nanopartículas/metabolismo , Poloxâmero/química , Poloxâmero/metabolismo , Ligação Proteica , Compostos de Amônio Quaternário/metabolismo , Soroalbumina Bovina/metabolismo
8.
J Med Microbiol ; 68(11): 1629-1640, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31553301

RESUMO

Introduction. ML1899 is conserved in all mycobacterium sp. and is a middle member of mle-ML1898 operon involved in mycolic acid modification.Aim. In the present study attempts were made to characterize ML1899 in detail.Methodology. Bioinformatics tools were used for prediction of active-site residues, antigenic epitopes and a three-dimensional model of protein. The gene was cloned, expressed and purified as His-tagged protein in Escherichia coli for biophysical/biochemical characterization. Recombinant protein was used to treat THP-1 cells to study change in production of nitric oxide (NO), reactive oxygen species (ROS), cytokines and chemokines using flowcytometry/ELISA.Results. In silico analysis predicted ML1899 as a member of α/ß hydrolase family with GXSXG-motif and Ser126, His282, Asp254 as active-site residues that were confirmed by site-directed mutagensis. ML1899 exhibited esterase activity. It hydrolysed pNP-butyrate as optimum substrate at pH 8.0 and 50 °C with 5.56 µM-1 min-1 catalytic efficiency. The enzyme exhibited stability up to 60 °C temperature and between pH 6.0 to 9.0. K m, V max and specific activity of ML1899 were calculated to be 400 µM, 40 µmoles min-1 ml-1 and 27 U mg- 1, respectively. ML1899 also exhibited phospholipase activity. The protein affected the survival of macrophages when treated at higher concentration. ML1899 enhanced ROS/NO production and up-regulated pro-inflammatory cytokines and chemokine including TNF-α, IFN-γ, IL-6 and IL-8 in macrophages. ML1899 was also observed to elicit humoral response in 69 % of leprosy patients.Conclusion. These results suggested that ML1899, an esterase could up-regulate the immune responses in favour of macrophages at a low concentration but kills the THP-1 macrophages cells at a higher concentration.


Assuntos
Proteínas de Bactérias/imunologia , Esterases/imunologia , Hanseníase/microbiologia , Mycobacterium leprae/enzimologia , Sequência de Aminoácidos , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Citocinas/genética , Citocinas/imunologia , Estabilidade Enzimática , Esterases/química , Esterases/genética , Feminino , Humanos , Concentração de Íons de Hidrogênio , Cinética , Hanseníase/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Mycobacterium leprae/química , Mycobacterium leprae/genética , Mycobacterium leprae/imunologia , Óxido Nítrico/imunologia , Espécies Reativas de Oxigênio/imunologia , Alinhamento de Sequência
9.
FEBS Lett ; 593(7): 697-702, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30883730

RESUMO

Ferric reductase B (FerB) is a flavin mononucleotide (FMN)-containing NAD(P)H:acceptor oxidoreductase structurally close to the Gluconacetobacter hansenii chromate reductase (ChrR). The crystal structure of ChrR was previously determined with a chloride bound proximal to FMN in the vicinity of Arg101, and the authors suggested that the anionic electron acceptors, chromate and uranyl tricarbonate, bind similarly. Here, we identify the corresponding arginine residue in FerB (Arg95) as being important for the reaction of FerB with superoxide. Four mutants at position 95 were prepared and found kinetically to have impaired capacity for superoxide binding. Stopped-flow data for the flavin cofactor showed that the oxidative step is rate limiting for catalytic turnover. The findings are consistent with a role for FerB as a superoxide scavenging contributor.


Assuntos
FMN Redutase/química , Flavinas/genética , Conformação Proteica , Superóxidos/metabolismo , Sequência de Aminoácidos/genética , Arginina/genética , Domínio Catalítico/genética , Cristalografia por Raios X , FMN Redutase/genética , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/genética , Flavinas/metabolismo , Cinética , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Paracoccus denitrificans/química , Paracoccus denitrificans/enzimologia
10.
World J Microbiol Biotechnol ; 34(11): 161, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30357477

RESUMO

In this study, the effect of sequential inoculation with non-Saccharomyces (Hanseniaspora guilliermondii) and Saccharomyces cerevisiae yeast on the distinctive characteristics of the Campanino white wine was investigated. For this purpose, three independent winemaking experiments were carried out on an industrial scale (batches A, B and C). In detail, the first one was carried out using the sequential inoculation technique while the other two, using a S. cerevisiae single-strain starter or no inoculation representing the control batches. Microbiological and chemical parameters and sensorial profiles of the wines were defined. Interestingly, the results showed that when sequential cultures (H. guilliermondii in a sequential mixture with S. cerevisiae) were used, a better wine aroma and quality was observed. More specifically, the wine obtained by sequential inoculation showed lower acetic acid values and enhanced volatile profiles than the wine from the control batches. Finally, sensorial analysis confirmed that the sequential cultures led to an improvement in wine flavour. Therefore, results suggest that the sequential inoculation using non-Saccharomyces and Saccharomyces yeast represents a biotechnological practice that can improve the quality features of traditional white wine. It has been shown for the first time that on an industrial scale H. guilliermondii could be used in sequential inoculum with S. cerevisiae in making white Campanino wine.


Assuntos
Hanseniaspora/crescimento & desenvolvimento , Microbiologia Industrial/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Vinho/microbiologia , Ácido Acético , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Meios de Cultura/metabolismo , Fermentação , Hanseniaspora/metabolismo , Cinética , Odorantes , Saccharomyces cerevisiae/metabolismo , Compostos Orgânicos Voláteis/análise
11.
Enzyme Microb Technol ; 119: 24-29, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30243383

RESUMO

The Gram-negative bacterium, Gluconacetobacter hansenii, has been long studied and is a model for cellulose synthesis. It produces cellulose, using the enzyme AcsA-AcsB, of exceptionally high crystallinity in comparison to the cellulose of higher plants. We determined the rate of cellulose synthesis in whole cells measured as moles of glucose incorporated into cellulose per second per mole of enzyme. This was determined by quantifying the rate of cellulose synthesis (over a short time span, such that the enzyme concentration is not changing due to cell growth) and the amount of enzyme in the whole cell by quantitative western blotting. We found that the whole cell rate of 24 s-1 is much faster than the kcat, measured from steady-state kinetic analysis, of 1.7 s-1. Our whole cell rates are consistent with previous studies using microscopy. We postulate that the rationale for this difference is the presence of an alternative in vivo priming mechanism. This in turn can increase the rate of initiation, which we previously postulated to be the rate-limiting step in catalysis.


Assuntos
Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Gluconacetobacter/enzimologia , Glucosiltransferases/isolamento & purificação , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Cinética
12.
J Microbiol Biotechnol ; 28(4): 579-587, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29385667

RESUMO

For biotechnological production of high-valued ß-D-hexyl glucoside, the catalytic properties of Hanseniaspora thailandica BC9 ß-glucosidase purified from the periplasmic fraction were studied, and the transglycosylation activity for the production of ß-D-hexyl glucoside was optimized. The constitutive BC9 ß-glucosidase exhibited maximum specific activity at pH 6.0 and 40ºC, and the activity of BC9 ß-glucosidase was not significantly inhibited by various metal ions. BC9 ß-glucosidase did not show a significant activity of cellobiose hydrolysis, but the activity was rather enhanced in the presence of sucrose and medium-chain alcohols. BC9 ß-glucosidase exhibited enhanced production of ß-D-hexyl glucoside in the presence of DMSO, and 62% of ß-D-hexyl glucoside conversion was recorded in 4 h in the presence of 5% 1-hexanol and 15% DMSO.


Assuntos
Glucosídeos/biossíntese , Hanseniaspora/enzimologia , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Álcoois/metabolismo , Catálise , Celobiose/metabolismo , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Glicosilação , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Metais/metabolismo , Solventes , Especificidade por Substrato , Sacarose/metabolismo , Açúcares/metabolismo , Temperatura , Fatores de Tempo , beta-Glucosidase/isolamento & purificação
13.
Biosci Biotechnol Biochem ; 81(7): 1343-1347, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28417702

RESUMO

Quinolones are important antimicrobials for treatment of leprosy, a chronic infectious disease caused by Mycobacterium leprae. Although it is well known that mutations in DNA gyrase are responsible for quinolone resistance, the effect of those mutations on the enzymatic activity is yet to be studied in depth. Hence, we conducted in vitro assays to observe supercoiling reactions of wild type and mutated M. leprae DNA gyrases. DNA gyrase with amino acid substitution Ala91Val possessed the highest activity among the mutants. DNA gyrase with Gly89Cys showed the lowest level of activity despite being found in clinical strains, but it supercoiled DNA like the wild type does if applied at a sufficient concentration. In addition, patterns of time-dependent conversion from relaxed circular DNA into supercoiled DNA by DNA gyrases with clinically unreported Asp95Gly and Asp95Asn were observed to be distinct from those by the other DNA gyrases.


Assuntos
Substituição de Aminoácidos , Antibacterianos/farmacologia , DNA Girase/química , Mutação , Mycobacterium leprae/efeitos dos fármacos , Quinolonas/farmacologia , Clonagem Molecular , DNA Girase/genética , DNA Girase/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , DNA Circular/química , DNA Circular/metabolismo , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , Farmacorresistência Bacteriana , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
14.
Biochemistry ; 56(14): 2051-2060, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28345882

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target, but it has proven difficult to develop medicinally useful, reversible inhibitors of this enzyme. Here we explored covalent strategies for the inactivation of PTP1B using a conjugate composed of an active site-directed 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide inhibitor connected via a short linker to an electrophilic α-bromoacetamide moiety. Inhibitor-electrophile conjugate 5a caused time-dependent loss of PTP1B activity consistent with a covalent inactivation mechanism. The inactivation occurred with a second-order rate constant of (1.7 ± 0.3) × 102 M-1 min-1. Mass spectrometric analysis of the inactivated enzyme indicated that the primary site of modification was C121, a residue distant from the active site. Previous work provided evidence that covalent modification of the allosteric residue C121 can cause inactivation of PTP1B [Hansen, S. K., Cancilla, M. T., Shiau, T. P., Kung, J., Chen, T., and Erlanson, D. A. (2005) Biochemistry 44, 7704-7712]. Overall, our results are consistent with an unusual enzyme inactivation process in which noncovalent binding of the inhibitor-electrophile conjugate to the active site of PTP1B protects the nucleophilic catalytic C215 residue from covalent modification, thus allowing inactivation of the enzyme via selective modification of allosteric residue C121.


Assuntos
Óxidos S-Cíclicos/química , Inibidores Enzimáticos/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Tiazóis/química , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Cristalografia por Raios X , Óxidos S-Cíclicos/síntese química , Inibidores Enzimáticos/síntese química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Mutação , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Termodinâmica , Tiazóis/síntese química
15.
PLoS One ; 12(1): e0170202, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107498

RESUMO

Short-chain dehydrogenase reductases (SDRs) have been utilized for catalyzing the reduction of many aromatic/aliphatic prochiral ketones to their respective alcohols. However, there is a paucity of data that elucidates their innate biological role and diverse substrate space. In this study, we executed an in-depth biochemical characterization and substrate space mapping (with 278 prochiral ketones) of an unannotated SDR (DHK) from Debaryomyces hansenii and compared it with structurally and functionally characterized SDR Synechococcus elongatus. PCC 7942 FabG to delineate its industrial significance. It was observed that DHK was significantly more efficient than FabG, reducing a diverse set of ketones albeit at higher conversion rates. Comparison of the FabG structure with a homology model of DHK and a docking of substrate to both structures revealed the presence of additional flexible loops near the substrate binding site of DHK. The comparative elasticity of the cofactor and substrate binding site of FabG and DHK was experimentally substantiated using differential scanning fluorimetry. It is postulated that the loop flexibility may account for the superior catalytic efficiency of DHK although the positioning of the catalytic triad is conserved.


Assuntos
Oxirredutases/metabolismo , Saccharomycetales/enzimologia , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Cinética , Oxirredutases/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
16.
Environ Sci Technol ; 50(7): 3572-9, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26963686

RESUMO

Atmospheric models of secondary organic aerosol (SOA) typically assume organic species form a well-mixed phase. As a result, partitioning of semivolatile oxidation products into the particle phase to form SOA is thought to be enhanced by preexisting organic particles. In this work, the physicochemical properties that govern such enhancement in SOA yield were examined. SOA yields from α-pinene ozonolysis were measured in the presence of a variety of organic seeds which were chosen based on polarity and phase state at room temperature. Yield enhancement was only observed with seeds of medium polarities (tetraethylene glycol and citric acid). Solid hexadecanol seed was observed to enhance SOA yields only in chamber experiments with longer mixing time scales, suggesting that the mixing process for SOA and hexadecanol may be kinetically limited at shorter time scales. Our observations indicate that, in addition to kinetic limitations, intermolecular interactions also play a significant role in determining SOA yields. Here we propose for the first time to use the Hansen solubility framework to determine aerosol miscibility and predict SOA yield enhancement. These results highlight that current models may overestimate SOA formation, and parametrization of intermolecular forces is needed for accurate predictions of SOA formation.


Assuntos
Aerossóis/química , Compostos Orgânicos/química , Monoterpenos Bicíclicos , Cinética , Modelos Teóricos , Monoterpenos/química , Ozônio/química , Solubilidade , Termodinâmica
17.
J Dairy Sci ; 99(4): 2502-2511, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26852809

RESUMO

Many health authorities have targeted salt reduction in food products as a means to reduce dietary sodium intake due to the harmful effects associated with its excessive consumption. In the present work, we evaluated the effect of reducing sodium chloride (NaCl) content on the microbiological and biochemical characteristics of an experimental surface-ripened cheese. A control cheese (1.8% NaCl) and a cheese with a reduced NaCl content (1.3% NaCl) were sampled weekly over a period of 27d. Reducing NaCl content induced microbial perturbations such as the lesser development of the yeast Debaryomyces hansenii and the greater development of the gram-negative bacterium Hafnia alvei. This was accompanied by changes in proteolytic kinetics and in profiles of volatile aroma compounds and biogenic amine production. Finally, the development of the spoilage microorganism Pseudomonas fragi was significantly higher in the cheese with a reduced salt content.


Assuntos
Queijo/microbiologia , Pseudomonas fragi/efeitos dos fármacos , Cloreto de Sódio na Dieta/farmacologia , Cloreto de Sódio/química , Animais , Aminas Biogênicas/análise , Queijo/análise , Cinética , Proteólise , Pseudomonas fragi/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/análise
18.
Enzyme Microb Technol ; 82: 58-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26672449

RESUMO

The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx.


Assuntos
Proteínas de Bactérias/química , Gluconacetobacter/enzimologia , Glucosiltransferases/química , Complexos Multienzimáticos/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Celulose/biossíntese , Centrifugação , Clonagem Molecular , Dimerização , Genes Bacterianos , Gluconacetobacter/genética , Glucosiltransferases/genética , Glucosiltransferases/isolamento & purificação , Glucosiltransferases/metabolismo , Cinética , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/isolamento & purificação , Complexos Multienzimáticos/metabolismo , Mutagênese Insercional , Subunidades Proteicas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
19.
Br J Pharmacol ; 172(21): 5161-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26276903

RESUMO

BACKGROUND AND PURPOSE: Kv 1.3 potassium channels are promising pharmaceutical targets for treating immune diseases as they modulate Ca(2+) signalling in T cells by regulating the membrane potential and with it the driving force for Ca(2+) influx. The antimycobacterial drug clofazimine has been demonstrated to attenuate antigen-induced Ca(2+) oscillations, suppress cytokine release and prevent skin graft rejection by inhibiting Kv 1.3 channels with high potency and selectivity. EXPERIMENTAL APPROACH: We used patch-clamp methodology to investigate clofazimine's mechanism of action in Kv 1.3 channels expressed in HEK293 cells. KEY RESULTS: Clofazimine blocked Kv 1.3 channels by involving two discrete mechanisms, both of which contribute to effective suppression of channels: (i) a use-dependent open-channel block during long depolarizations, resulting in accelerated K(+) current inactivation and (ii) a block of closed deactivated channels after channels were opened by brief depolarizations. Both modes of block were use-dependent and state-dependent in that they clearly required prior channel opening. The clofazimine-sensitive closed-deactivated state of the channel was distinct from the resting closed state because channels at hyperpolarized voltages were not inhibited by clofazimine. Neither were channels in the C-type inactivated state significantly affected. Kv 1.3 channels carrying the H399T mutation and lacking C-type inactivation were insensitive to clofazimine block of the closed-deactivated state, but retained their susceptibility to open-channel block. CONCLUSIONS AND IMPLICATIONS: Given the prominent role of Kv 1.3 in shaping Ca(2+) oscillations, the use-dependent and state-dependent block of Kv 1.3 channels by clofazimine offers therapeutic potential for selective immunosuppression in the context of autoimmune diseases in which Kv 1.3-expressing T cells play a significant role.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Clofazimina/farmacologia , Canal de Potássio Kv1.3/antagonistas & inibidores , Hansenostáticos/farmacologia , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Canal de Potássio Kv1.3/genética , Mutação , Técnicas de Patch-Clamp
20.
Eur J Pharm Biopharm ; 94: 106-15, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25998701

RESUMO

To improve solubility of tadalafil (Td), a poorly soluble drug substance (3µg/ml) belonging to the II class of the Biopharmaceutical Classification System, its six different solid dispersions (1:1, w/w) in the following polymers: HPMC, MC, PVP, PVP-VA, Kollicoat IR and Soluplus were successfully produced by freeze-drying. Scanning electron microscopy showed a morphological structure of solid dispersions typical of lyophilisates. Apparent solubility and intrinsic dissolution rate studies revealed the greatest, a 16-fold, increase in drug solubility (50µg/ml) and a significant, 20-fold, dissolution rate enhancement for the Td/PVP-VA solid dispersion in comparison with crystalline Td. However, the longest duration of the supersaturation state in water (27µg/ml) over 24h was observed for the Td solid dispersion in HPMC. The improved dissolution of Td from Td/PVP-VA was confirmed in the standard dissolution test of capsules filled with solid dispersions. Powder X-ray diffraction and thermal analysis showed the amorphous nature of these binary systems and indicated the existence of dispersion at the molecular level and its supersaturated character, respectively. Nevertheless, as evidenced by film casting, the greatest ability to dissolve Td in polymer was determined for PVP-VA. The crystallization tendency of Td dispersed in Kollicoat IR could be explained by the low Tg (113°C) of the solid dispersion and the highest difference in Hansen solubility parameters (6.8MPa(0.5)) between Td and the polymer, although this relationship was not satisfied for the partially crystalline dispersion in PVP. Similarly, no correlation was found between the strength of hydrogen bonds investigated using infrared spectroscopy and the physical stability of solid dispersions or the level of supersaturation in aqueous solution.


Assuntos
Derivados da Hipromelose/química , Pirrolidinas/química , Tadalafila/química , Compostos de Vinila/química , Varredura Diferencial de Calorimetria , Cápsulas , Química Farmacêutica , Cristalografia por Raios X , Estabilidade de Medicamentos , Liofilização , Ligação de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Difração de Pó , Pós , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Tecnologia Farmacêutica/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA