Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros


Bases de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 147: 110549, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399526

RESUMO

Kombucha is a very distinct naturally fermented sweetened tea that has been produced for thousands of years. Fermentation relies on metabolic activities of the complex autochthonous symbiotic microbiota embedded in a floating biofilm and used as a backslop for successive fermentations. Here, we designed a tailor-made microbial consortium representative of the core Kombucha microbiota to drive this fermentation. Microbial (counts, metagenetics), physico-chemical (pH, density) and biochemical (organic acids, volatile compounds) parameters were monitored as well as biofilm formation by confocal laser scanning microscopy and scanning electron microscopy. While nine species were co-inoculated, four (Dekkera bruxellensis, Hanseniaspora uvarum, Acetobacter okinawensis and Liquorilactobacillus nagelii) largely dominated. Microbial activities led to acetic, lactic, succinic and oxalic acids being produced right from the start of fermentation while gluconic and glucuronic acids progressively increased. A distinct shift in volatile profile was also observed with mainly aldehydes identified early on, then high abundances of fatty acids, ketones and esters at the end. Correlation analyses, combining metabolomic and microbial data also showed a shift in species abundances during fermentation. We also determined distinct bacteria-yeast co-occurence patterns in biofilms by microscopy. Our study provides clear evidence that a tailor-made consortium can be successfully used to drive Kombucha fermentations.


Assuntos
Consórcios Microbianos , Microbiota , Acetobacter , Biofilmes , Brettanomyces , Fermentação , Hanseniaspora
2.
Yeast ; 36(3): 129-141, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30512214

RESUMO

Numerous traditionally aged cheeses are surface ripened and develop a biofilm, known as the cheese rind, on their surfaces. The rind of such cheeses comprises a complex community of bacterial and fungal species that are jointly responsible for the typical characteristics of the various cheese varieties. Surface ripening starts directly after brining with the rapid colonization of the cheese surface by yeasts. The initially dominant yeasts are acid and salt-tolerant and are capable of metabolizing the lactate produced by the starter lactic acid bacteria and of producing NH3 from amino acids. Both processes cause the pH of the cheese surface to rise dramatically. This so-called deacidification process enables the establishment of a salt-tolerant, Gram-positive bacterial community that is less acid-tolerant. Over the past decade, knowledge of yeast diversity in cheeses has increased considerably. The yeast species with the highest prevalence on surface-ripened cheeses are Debaryomyces hansenii and Geotrichum candidum, but up to 30 species can be found. In the cheese core, only lactose-fermenting yeasts, such as Kluyveromyces marxianus, are expected to grow. Yeasts are recognized as having an indispensable impact on the development of cheese flavour and texture because of their deacidifying, proteolytic, and/or lipolytic activity. Yeasts are used not only in the production of surface-ripened cheeses but also as adjunct cultures in the vat milk in order to modify ripening behaviour and flavour of the cheese. However, yeasts may also be responsible for spoilage of cheese, causing early blowing, off-flavour, brown discolouration, and other visible alterations of cheese.


Assuntos
Queijo/microbiologia , Consórcios Microbianos , Interações Microbianas , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo , Aminoácidos/metabolismo , Amônia/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Lactatos/metabolismo
3.
Microbiol Res ; 206: 1-8, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29146247

RESUMO

The microbial assemblies on the surface of plants correlate with specific climatic features, suggesting a direct link between environmental conditions and microbial inhabitation patterns. At the same time however, microbial communities demonstrate distinct profiles depending on the plant species and region of origin. In this study, we report Next Generation Sequencing-based metagenomic analysis of microbial communities associated with apple and blackcurrant fruits harvested from Lithuania and the Czech Republic. Differences in the taxonomic composition of eukaryotic and prokaryotic microorganisms were observed between plant types. Our results revealed limited geographic differentiation between the bacterial and fungal communities associated with apples. In contrast, blackcurrant berries harvested from different regions demonstrated high diversity in both bacterial and fungal microbiota structures. Among fungal and bacterial microorganisms, we identified both potentially beneficial (Cryptococcus, Hanseniaspora, Massilia, Rhodotorula, Sphingomonas) and phytopathogenic microorganisms (Cladosporium, Pantoea, Phoma, Pseudomonas, Septoria, Taphrina) indicating their important roles in ecological and evolutionary processes.


Assuntos
Malus/microbiologia , Consórcios Microbianos , Microbiota , Ribes/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , República Tcheca , DNA Bacteriano/isolamento & purificação , DNA Fúngico/isolamento & purificação , Ecologia , Frutas/microbiologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Lituânia , Metagenômica/métodos , Microbiota/genética , Filogenia
4.
Antonie Van Leeuwenhoek ; 108(3): 525-36, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26108494

RESUMO

The fermentative and aromatic capabilities of Kloeckera africana/Hanseniaspora vineae K1, K. apiculata/H. uvarum K2, and Saccharomyces cerevisiae S1 and S2 were studied in pure and mixed culture fermentations using Agave tequila juice as the culture medium. In pure and mixed cultures, Kloeckera/Hanseniaspora strains showed limited growth and sugar consumption, as well as low ethanol yield and productivity, compared to S. cerevisiae, which yielded more biomass, ethanol and viable cell concentrations. In pure and mixed cultures, S. cerevisiae presented a similar behaviour reaching high biomass production, completely consuming the sugar, leading to high ethanol production. Furthermore, the presence of S. cerevisiae strains in the mixed cultures promoted the production of higher alcohols, acetaldehyde and ethyl esters, whereas Kloeckera/Hanseniaspora strains stimulated the production of ethyl acetate and 2-phenyl ethyl acetate compounds.


Assuntos
Agave/metabolismo , Bebidas Alcoólicas/microbiologia , Kloeckera/metabolismo , Saccharomyces/metabolismo , Compostos Orgânicos Voláteis/análise , Fermentação , Kloeckera/crescimento & desenvolvimento , Consórcios Microbianos , Saccharomyces/crescimento & desenvolvimento
5.
Microbiol Spectr ; 2(1): CM-0010-2012, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26082119

RESUMO

Comprehensive collaborative studies from our laboratories reveal the extensive biodiversity of the microflora of the surfaces of smear-ripened cheeses. Two thousand five hundred ninety-seven strains of bacteria and 2,446 strains of yeasts from the surface of the smear-ripened cheeses Limburger, Reblochon, Livarot, Tilsit, and Gubbeen, isolated at three or four times during ripening, were identified; 55 species of bacteria and 30 species of yeast were found. The microfloras of the five cheeses showed many similarities but also many differences and interbatch variation. Very few of the commercial smear microorganisms, deliberately inoculated onto the cheese surface, were reisolated and then mainly from the initial stages of ripening, implying that smear cheese production units must have an adventitious "house" flora. Limburger cheese had the simplest microflora, containing two yeasts, Debaryomyces hansenii and Geotrichum candidum, and two bacteria, Arthrobacter arilaitensis and Brevibacterium aurantiacum. The microflora of Livarot was the most complicated, comprising 10 yeasts and 38 bacteria, including many gram-negative organisms. Reblochon also had a very diverse microflora containing 8 yeasts and 13 bacteria (excluding gram-negative organisms which were not identified), while Gubbeen had 7 yeasts and 18 bacteria and Tilsit had 5 yeasts and 9 bacteria. D. hansenii was by far the dominant yeast, followed in order by G. candidum, Candida catenulata, and Kluyveromyces lactis. B. aurantiacum was the dominant bacterium and was found in every batch of the 5 cheeses. The next most common bacteria, in order, were Staphylococcus saprophyticus, A. arilaitensis, Corynebacterium casei, Corynebacterium variabile, and Microbacterium gubbeenense. S. saprophyticus was mainly found in Gubbeen, and A. arilaitensis was found in all cheeses but not in every batch. C. casei was found in most batches of Reblochon, Livarot, Tilsit, and Gubbeen. C. variabile was found in all batches of Gubbeen and Reblochon but in only one batch of Tilsit and in no batch of Limburger or Livarot. Other bacteria were isolated in low numbers from each of the cheeses, suggesting that each of the 5 cheeses has a unique microflora. In Gubbeen cheese, several different strains of the dominant bacteria were present, as determined by pulsed-field gel electrophoresis, and many of the less common bacteria were present as single clones. The culture-independent method, denaturing gradient gel electrophoresis, resulted in identification of several bacteria which were not found by the culture-dependent (isolation and rep-PCR identification) method. It was thus a useful complementary technique to identify other bacteria in the cheeses. The gross composition, the rate of increase in pH, and the indices of proteolysis were different in most of the cheeses.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Queijo/microbiologia , Consórcios Microbianos , Leveduras/classificação , Leveduras/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA