Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Med Chem ; 62(15): 7210-7232, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31282680

RESUMO

Mycobacterium abscessus (Mab) is a rapidly growing species of multidrug-resistant nontuberculous mycobacteria that has emerged as a growing threat to individuals with cystic fibrosis and other pre-existing chronic lung diseases. Mab pulmonary infections are difficult, or sometimes impossible, to treat and result in accelerated lung function decline and premature death. There is therefore an urgent need to develop novel antibiotics with improved efficacy. tRNA (m1G37) methyltransferase (TrmD) is a promising target for novel antibiotics. It is essential in Mab and other mycobacteria, improving reading frame maintenance on the ribosome to prevent frameshift errors. In this work, a fragment-based approach was employed with the merging of two fragments bound to the active site, followed by structure-guided elaboration to design potent nanomolar inhibitors against Mab TrmD. Several of these compounds exhibit promising activity against mycobacterial species, including Mycobacterium tuberculosis and Mycobacterium leprae in addition to Mab, supporting the use of TrmD as a target for the development of antimycobacterial compounds.


Assuntos
Antibacterianos/química , Desenvolvimento de Medicamentos/métodos , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/enzimologia , tRNA Metiltransferases/antagonistas & inibidores , tRNA Metiltransferases/metabolismo , Antibacterianos/farmacologia , Cristalografia por Raios X/métodos , Humanos , Estrutura Secundária de Proteína
2.
FEBS Lett ; 593(7): 697-702, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30883730

RESUMO

Ferric reductase B (FerB) is a flavin mononucleotide (FMN)-containing NAD(P)H:acceptor oxidoreductase structurally close to the Gluconacetobacter hansenii chromate reductase (ChrR). The crystal structure of ChrR was previously determined with a chloride bound proximal to FMN in the vicinity of Arg101, and the authors suggested that the anionic electron acceptors, chromate and uranyl tricarbonate, bind similarly. Here, we identify the corresponding arginine residue in FerB (Arg95) as being important for the reaction of FerB with superoxide. Four mutants at position 95 were prepared and found kinetically to have impaired capacity for superoxide binding. Stopped-flow data for the flavin cofactor showed that the oxidative step is rate limiting for catalytic turnover. The findings are consistent with a role for FerB as a superoxide scavenging contributor.


Assuntos
FMN Redutase/química , Flavinas/genética , Conformação Proteica , Superóxidos/metabolismo , Sequência de Aminoácidos/genética , Arginina/genética , Domínio Catalítico/genética , Cristalografia por Raios X , FMN Redutase/genética , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/genética , Flavinas/metabolismo , Cinética , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Paracoccus denitrificans/química , Paracoccus denitrificans/enzimologia
3.
PLoS Pathog ; 13(8): e1006564, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28806750

RESUMO

Photorhabdus asymbiotica is one of the three recognized species of the Photorhabdus genus, which consists of gram-negative bioluminescent bacteria belonging to the family Morganellaceae. These bacteria live in a symbiotic relationship with nematodes from the genus Heterorhabditis, together forming a complex that is highly pathogenic for insects. Unlike other Photorhabdus species, which are strictly entomopathogenic, P. asymbiotica is unique in its ability to act as an emerging human pathogen. Analysis of the P. asymbiotica genome identified a novel fucose-binding lectin designated PHL with a strong sequence similarity to the recently described P. luminescens lectin PLL. Recombinant PHL exhibited high affinity for fucosylated carbohydrates and the unusual disaccharide 3,6-O-Me2-Glcß1-4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2 from Mycobacterium leprae. Based on its crystal structure, PHL forms a seven-bladed ß-propeller assembling into a homo-dimer with an inter-subunit disulfide bridge. Investigating complexes with different ligands revealed the existence of two sets of binding sites per monomer-the first type prefers l-fucose and its derivatives, whereas the second type can bind d-galactose. Based on the sequence analysis, PHL could contain up to twelve binding sites per monomer. PHL was shown to interact with all types of red blood cells and insect haemocytes. Interestingly, PHL inhibited the production of reactive oxygen species induced by zymosan A in human blood and antimicrobial activity both in human blood, serum and insect haemolymph. Concurrently, PHL increased the constitutive level of oxidants in the blood and induced melanisation in haemolymph. Our results suggest that PHL might play a crucial role in the interaction of P. asymbiotica with both human and insect hosts.


Assuntos
Proteínas de Bactérias/imunologia , Interações Hospedeiro-Patógeno/imunologia , Lectinas/imunologia , Photorhabdus/imunologia , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Cristalografia por Raios X , Humanos , Lectinas/química , Lectinas/genética , Dados de Sequência Molecular , Photorhabdus/genética , Conformação Proteica , Ressonância de Plasmônio de Superfície
4.
Biochemistry ; 56(14): 2051-2060, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28345882

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target, but it has proven difficult to develop medicinally useful, reversible inhibitors of this enzyme. Here we explored covalent strategies for the inactivation of PTP1B using a conjugate composed of an active site-directed 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide inhibitor connected via a short linker to an electrophilic α-bromoacetamide moiety. Inhibitor-electrophile conjugate 5a caused time-dependent loss of PTP1B activity consistent with a covalent inactivation mechanism. The inactivation occurred with a second-order rate constant of (1.7 ± 0.3) × 102 M-1 min-1. Mass spectrometric analysis of the inactivated enzyme indicated that the primary site of modification was C121, a residue distant from the active site. Previous work provided evidence that covalent modification of the allosteric residue C121 can cause inactivation of PTP1B [Hansen, S. K., Cancilla, M. T., Shiau, T. P., Kung, J., Chen, T., and Erlanson, D. A. (2005) Biochemistry 44, 7704-7712]. Overall, our results are consistent with an unusual enzyme inactivation process in which noncovalent binding of the inhibitor-electrophile conjugate to the active site of PTP1B protects the nucleophilic catalytic C215 residue from covalent modification, thus allowing inactivation of the enzyme via selective modification of allosteric residue C121.


Assuntos
Óxidos S-Cíclicos/química , Inibidores Enzimáticos/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Tiazóis/química , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Cristalografia por Raios X , Óxidos S-Cíclicos/síntese química , Inibidores Enzimáticos/síntese química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Mutação , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Termodinâmica , Tiazóis/síntese química
5.
J Struct Biol ; 196(3): 448-454, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27659385

RESUMO

All mycobacteria with sequenced genomes, except M. leprae, have a second Single Stranded DNA Binding protein (SSBb) in addition to the canonical one (SSBa). This paralogue from M. smegmatis (MsSSBb) has been cloned, expressed and purified. The protein, which is probably involved in stress response, has been crystallized and X-ray analyzed in the first structure elucidation of a mycobacterial SSBb. In spite of the low sequence identity between SSBas and SSBbs in mycobacteria, the tertiary and quaternary structure of the DNA binding domain of MsSSBb is similar to that observed in mycobacterial SSBas. In particular, the quaternary structure is 'clamped' using a C-terminal stretch of the N-domain, which endows the tetrameric molecule with additional stability and its characteristic shape. Comparison involving available, rather limited, structural data on SSBbs from other sources, appears to suggest that SSBbs could exhibit higher structural variability than SSBas do.


Assuntos
DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Mycobacterium smegmatis/química , Sequência de Aminoácidos/genética , Cristalografia por Raios X , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Modelos Moleculares , Mycobacterium smegmatis/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
6.
PLoS One ; 11(5): e0155886, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27214134

RESUMO

Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into ß-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the hypothesis that it is the extrusion mechanism and order in linearly arrayed TCs that enables production of crystalline cellulose.


Assuntos
Gluconacetobacter/enzimologia , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Membrana Celular/metabolismo , Celulose/biossíntese , Cristalografia por Raios X , Tomografia com Microscopia Eletrônica , Gluconacetobacter/química , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Conformação Proteica
7.
Acta Crystallogr C Struct Chem ; 72(Pt 4): 280-4, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27045177

RESUMO

Dapsone, formerly used to treat leprosy, now has wider therapeutic applications. As is the case for many therapeutic agents, low aqueous solubility and high toxicity are the main problems associated with its use. Derivatization of its amino groups has been widely explored but shows no significant therapeutic improvements. Cocrystals have been prepared to understand not only its structural properties, but also its solubility and dissolution rate. Few salts of dapsone have been described. The title salts, C12H13N2O2S(+)·C6H5O3S(-)·H2O and C12H13N2O2S(+)·CH3SO3(-)·H2O, crystallize as hydrates and both compounds exhibit the same space group (monoclinic, P21/n). The asymmetric unit of each salt consists of a 4-[(4-aminophenyl)sulfonyl]anilinium monocation, the corresponding sulfonate anion and a water molecule. The cation, anion and water molecule form hydrogen-bonded networks through N-H...O=S, N-H...Owater and Owater-H...O=S hydrogen bonds. For both salts, the water molecules interact with one sulfonate anion and two anilinium cations. The benzenesulfonate salt forms a two-dimensional network, while the hydrogen bonding within the methanesulfonate salt results in a three-dimensional network.


Assuntos
Compostos de Anilina/química , Benzenossulfonatos/química , Dapsona/química , Mesilatos/química , Cristalografia por Raios X , Ligação de Hidrogênio , Estrutura Molecular , Sais
8.
Eur J Pharm Biopharm ; 94: 106-15, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25998701

RESUMO

To improve solubility of tadalafil (Td), a poorly soluble drug substance (3µg/ml) belonging to the II class of the Biopharmaceutical Classification System, its six different solid dispersions (1:1, w/w) in the following polymers: HPMC, MC, PVP, PVP-VA, Kollicoat IR and Soluplus were successfully produced by freeze-drying. Scanning electron microscopy showed a morphological structure of solid dispersions typical of lyophilisates. Apparent solubility and intrinsic dissolution rate studies revealed the greatest, a 16-fold, increase in drug solubility (50µg/ml) and a significant, 20-fold, dissolution rate enhancement for the Td/PVP-VA solid dispersion in comparison with crystalline Td. However, the longest duration of the supersaturation state in water (27µg/ml) over 24h was observed for the Td solid dispersion in HPMC. The improved dissolution of Td from Td/PVP-VA was confirmed in the standard dissolution test of capsules filled with solid dispersions. Powder X-ray diffraction and thermal analysis showed the amorphous nature of these binary systems and indicated the existence of dispersion at the molecular level and its supersaturated character, respectively. Nevertheless, as evidenced by film casting, the greatest ability to dissolve Td in polymer was determined for PVP-VA. The crystallization tendency of Td dispersed in Kollicoat IR could be explained by the low Tg (113°C) of the solid dispersion and the highest difference in Hansen solubility parameters (6.8MPa(0.5)) between Td and the polymer, although this relationship was not satisfied for the partially crystalline dispersion in PVP. Similarly, no correlation was found between the strength of hydrogen bonds investigated using infrared spectroscopy and the physical stability of solid dispersions or the level of supersaturation in aqueous solution.


Assuntos
Derivados da Hipromelose/química , Pirrolidinas/química , Tadalafila/química , Compostos de Vinila/química , Varredura Diferencial de Calorimetria , Cápsulas , Química Farmacêutica , Cristalografia por Raios X , Estabilidade de Medicamentos , Liofilização , Ligação de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Difração de Pó , Pós , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Tecnologia Farmacêutica/métodos , Temperatura
9.
Molecules ; 20(3): 4042-54, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25741898

RESUMO

This work concerns a comparison of experimental and theoretical results of the electron charge density distribution and the electrostatic potential around the m-nitrophenol molecule (m-NPH) known for its interesting physical characteristics. The molecular experimental results have been obtained from a high-resolution X-ray diffraction study. Theoretical investigations were performed using the Density Functional Theory at B3LYP level of theory at 6-31G* in the Gaussian program. The multipolar model of Hansen and Coppens was used for the experimental electron charge density distribution around the molecule, while we used the DFT methods for the theoretical calculations. The electron charge density obtained in both methods allowed us to find out different molecular properties such us the electrostatic potential and the dipole moment, which were finally subject to a comparison leading to a good match obtained between both methods. The intramolecular charge transfer has also been confirmed by an HOMO-LUMO analysis.


Assuntos
Nitrofenóis/química , Teoria Quântica , Eletricidade Estática , Termodinâmica , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
10.
J Biol Chem ; 289(49): 33850-61, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25301946

RESUMO

Sarcolipin (SLN) is a regulatory peptide present in sarcoplasmic reticulum (SR) from skeletal muscle of animals. We find that native rabbit SLN is modified by a fatty acid anchor on Cys-9 with a palmitic acid in about 60% and, surprisingly, an oleic acid in the remaining 40%. SLN used for co-crystallization with SERCA1a (Winther, A. M., Bublitz, M., Karlsen, J. L., Moller, J. V., Hansen, J. B., Nissen, P., and Buch-Pedersen, M. J. (2013) Nature 495, 265-2691; Ref. 1) is also palmitoylated/oleoylated, but is not visible in crystal structures, probably due to disorder. Treatment with 1 m hydroxylamine for 1 h removes the fatty acids from a majority of the SLN pool. This treatment did not modify the SERCA1a affinity for Ca(2+) but increased the Ca(2+)-dependent ATPase activity of SR membranes indicating that the S-acylation of SLN or of other proteins is required for this effect on SERCA1a. Pig SLN is also fully palmitoylated/oleoylated on its Cys-9 residue, but in a reverse ratio of about 40/60. An alignment of 67 SLN sequences from the protein databases shows that 19 of them contain a cysteine and the rest a phenylalanine at position 9. Based on a cladogram, we postulate that the mutation from phenylalanine to cysteine in some species is the result of an evolutionary convergence. We suggest that, besides phosphorylation, S-acylation/deacylation also regulates SLN activity.


Assuntos
Cisteína/química , Proteínas Musculares/química , Músculo Esquelético/metabolismo , Ácido Oleico/química , Ácido Palmítico/química , Fenilalanina/química , Processamento de Proteína Pós-Traducional , Proteolipídeos/química , Sequência de Aminoácidos , Animais , Evolução Biológica , Cristalografia por Raios X , Cisteína/metabolismo , Expressão Gênica , Hidroxilamina/química , Cinética , Lipoilação , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/classificação , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/química , Ácido Oleico/metabolismo , Ácido Palmítico/metabolismo , Fenilalanina/metabolismo , Filogenia , Proteolipídeos/classificação , Proteolipídeos/genética , Proteolipídeos/metabolismo , Coelhos , Retículo Sarcoplasmático , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Alinhamento de Sequência , Especificidade da Espécie , Suínos , Termodinâmica
11.
J Struct Biol ; 188(2): 156-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25260828

RESUMO

Among the few proteins shown to be secreted by the Tat system in Mycobacterium tuberculosis, Rv2525c is of particular interest, since its gene is conserved in the minimal genome of Mycobacterium leprae. Previous evidence linked this protein to cell wall metabolism and sensitivity to ß-lactams. We describe here the crystal structure of Rv2525c that shows a TIM barrel-like fold characteristic of glycoside hydrolases of the GH25 family, which includes prokaryotic and phage-encoded peptidoglycan hydrolases. Structural comparison with other members of this family combined with substrate docking suggest that, although the 'neighbouring group' catalytic mechanism proposed for this family still appears as the most plausible, the identity of residues involved in catalysis in GH25 hydrolases might need to be revised.


Assuntos
Proteínas de Bactérias/metabolismo , Produtos do Gene tat/metabolismo , Mycobacterium tuberculosis/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Parede Celular/metabolismo , Cristalografia por Raios X/métodos , Dados de Sequência Molecular , Alinhamento de Sequência
12.
Artigo em Inglês | MEDLINE | ID: mdl-24892603

RESUMO

An experimental charge-density analysis of pyrazinamide (a first line antitubercular drug) was performed using high-resolution X-ray diffraction data [(sin θ/λ)max = 1.1 Å(-1)] measured at 100 (2) K. The structure was solved by direct methods using SHELXS97 and refined by SHELXL97. The total electron density of the pyrazinamide molecule was modeled using the Hansen-Coppens multipole formalism implemented in the XD software. The topological properties of electron density determined from the experiment were compared with the theoretical results obtained from CRYSTAL09 at the B3LYP/6-31G** level of theory. The crystal structure was stabilized by N-H...N and N-H...O hydrogen bonds, in which the N3-H3B...N1 and N3-H3A...O1 interactions form two types of dimers in the crystal. Hirshfeld surface analysis was carried out to analyze the intermolecular interactions. The fingerprint plot reveals that the N...H and O...H hydrogen-bonding interactions contribute 26.1 and 18.4%, respectively, of the total Hirshfeld surface. The lattice energy of the molecule was calculated using density functional theory (B3LYP) methods with the 6-31G** basis set. The molecular electrostatic potential of the pyrazinamide molecule exhibits extended electronegative regions around O1, N1 and N2. The existence of a negative electrostatic potential (ESP) region just above the upper and lower surfaces of the pyrazine ring confirm the π-electron cloud.


Assuntos
Antituberculosos/química , Pirazinamida/química , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Eletricidade Estática
13.
AAPS PharmSciTech ; 15(3): 560-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24570374

RESUMO

The objective of this study was to develop a suitable formulation for baicalein (a poorly water-soluble drug exhibiting high melting point) to prepare solid dispersions using hot melt extrusion (HME). Proper carriers and plasticizers were selected by calculating the Hansen solubility parameters, evaluating melting processing condition, and measuring the solubility of obtained melts. The characteristic of solid dispersions prepared by HME was evaluated. The dissolution performance of the extrudates was compared to the pure drug and the physical mixtures. Physicochemical properties of the extrudates were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). Relative bioavailability after oral administration in beagle dogs was assessed. As a result, Kollidon VA64 and Eudragit EPO were selected as two carriers; Cremophor RH was used as the plasticizer. The dissolution of all the extrudates was significantly improved. DSC and PXRD results suggested that baicalein in the extrudates was amorphous. FTIR spectroscopy revealed the interaction between drug and polymers. After oral administration, the relative bioavailability of solid dispersions with VA64 and EPO was comparative, about 2.4- and 2.9-fold greater compared to the pure drug, respectively.


Assuntos
Portadores de Fármacos , Flavanonas/administração & dosagem , Temperatura Alta , Plastificantes/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Pirrolidinas/química , Tecnologia Farmacêutica/métodos , Compostos de Vinila/química , Água/química , Administração Oral , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Química Farmacêutica , Cristalografia por Raios X , Cães , Estabilidade de Medicamentos , Flavanonas/sangue , Flavanonas/química , Flavanonas/farmacocinética , Masculino , Modelos Químicos , Transição de Fase , Difração de Pó , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Biochem Pharmacol ; 87(4): 571-8, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24355563

RESUMO

Research on existing drugs often discovers novel mechanisms of their action and leads to the expansion of their therapeutic scope and subsequent remarketing. The Wnt signaling pathway is of the immediate therapeutic relevance, as it plays critical roles in cancer development and progression. However, drugs which disrupt this pathway are unavailable despite the high demand. Here we report an attempt to identify antagonists of the Wnt-FZD interaction among the library of the FDA-approved drugs. We performed an in silico screening which brought up several potential antagonists of the ligand-receptor interaction. 14 of these substances were tested using the TopFlash luciferase reporter assay and four of them identified as active and specific inhibitors of the Wnt3a-induced signaling. However, further analysis through GTP-binding and ß-catenin stabilization assays showed that the compounds do not target the Wnt-FZD pair, but inhibit the signaling at downstream levels. We further describe the previously unknown inhibitory activity of an anti-leprosy drug clofazimine in the Wnt pathway and provide data demonstrating its efficiency in suppressing growth of Wnt-dependent triple-negative breast cancer cells. These data provide a basis for further investigations of the efficiency of clofazimine in treatment of Wnt-dependent cancers.


Assuntos
Clofazimina/farmacologia , Inibidores do Crescimento/farmacologia , Hansenostáticos/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Proteína Wnt3A/antagonistas & inibidores , Proteína Wnt3A/fisiologia , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Linhagem Celular Tumoral , Clofazimina/uso terapêutico , Cristalografia por Raios X , Inibidores do Crescimento/uso terapêutico , Células HEK293 , Humanos , Hansenostáticos/uso terapêutico , Camundongos , Neoplasias de Mama Triplo Negativas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteína Wnt3A/química
15.
Biochemistry (Mosc) ; 78(5): 517-30, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23848154

RESUMO

Urokinase-type plasminogen activator (uPA) is a serine protease that converts the plasminogen zymogen into the enzymatically active plasmin. uPA is synthesized and secreted as the single-chain molecule (scuPA) composed of an N-terminal domain (GFD) and kringle (KD) and C-terminal proteolytic (PD) domains. Earlier, the structure of ATF (which consists of GFD and KD) was solved by NMR (A. P. Hansen et al. (1994) Biochemistry, 33, 4847-4864) and by X-ray crystallography alone and in a complex with the soluble form of the urokinase receptor (uPAR, CD87) lacking GPI (C. Barinka et al. (2006) J. Mol. Biol., 363, 482-495). According to these data, GFD contains two ß-sheet regions oriented perpendicularly to each other. The area in the GFD responsible for binding to uPAR is localized in the flexible Ω-loop, which consists of seven amino acid residues connecting two strings of antiparallel ß-sheet. It was shown by site-directed mutagenesis that shortening of the Ω-loop length by one amino acid residue leads to the inability of GFD to bind to uPAR (V. Magdolen et al. (1996) Eur. J. Biochem., 237, 743-751). Here we show that, in contrast to the above-mentioned studies, we found no sign of the ß-sheet regions in GFD in our uPA preparations either free or in a complex with uPAR. The GFD seems to be a rather flexible and unstructured domain, demonstrating in spite of its apparent flexibility highly specific interaction with uPAR both in vitro and in cell culture experiments. Circular dichroism, tryptophan fluorescence during thermal denaturation of the protein, and heteronuclear NMR spectroscopy of ¹5N/¹³C-labeled ATF both free and in complex with urokinase receptor were used to judge the secondary structure of GFD of uPA.


Assuntos
Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Ativador de Plasminogênio Tipo Uroquinase/química , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética
16.
Acta Crystallogr C ; 69(Pt 3): 285-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23459357

RESUMO

The conformation and tautomeric structure of (Z)-4-[5-(2,6-difluorobenzyl)-1-(2-fluorobenzyl)-2-oxo-1,2-dihydropyridin-3-yl]-4-hydroxy-2-oxo-N-(2-oxopyrrolidin-1-yl)but-3-enamide, C27H22F3N3O5, in the solid state has been resolved by single-crystal X-ray crystallography. The electron distribution in the molecule was evaluated by refinements with invarioms, aspherical scattering factors by the method of Dittrich et al. [Acta Cryst. (2005), A61, 314-320] that are based on the Hansen-Coppens multipole model [Hansen & Coppens (1978). Acta Cryst. A34, 909-921]. The ß-diketo portion of the molecule exists in the enol form. The enol -OH hydrogen forms a strong asymmetric hydrogen bond with the carbonyl O atom on the ß-C atom of the chain. Weak intramolecular hydrogen bonds exist between the weakly acidic α-CH hydrogen of the keto-enol group and the pyridinone carbonyl O atom, and also between the hydrazine N-H group and the carbonyl group in the ß-position from the hydrazine N-H group. The electrostatic properties of the molecule were derived from the molecular charge density. The molecule is in a lengthened conformation and the rings of the two benzyl groups are nearly orthogonal. Results from a high-field (1)H and (13)C NMR correlation spectroscopy study confirm that the same tautomer exists in solution as in the solid state.


Assuntos
Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , Piridinas/química , Pirrolidinas/química , Soluções/química , Cristalografia por Raios X , Elétrons , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular
17.
Acta Crystallogr B ; 68(Pt 6): 646-60, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23165601

RESUMO

The electron-density distribution of a new crystal form of coumarin-102, a laser dye, has been investigated using the Hansen-Coppens multipolar atom model. The charge density was refined versus high-resolution X-ray diffraction data collected at 100 K and was also constructed by transferring the charge density from the Experimental Library of Multipolar Atom Model (ELMAM2). The topology of the refined charge density has been analysed within the Bader `Atoms In Molecules' theory framework. Deformation electron-density peak heights and topological features indicate that the chromen-2-one ring system has a delocalized π-electron cloud in resonance with the N (amino) atom. The molecular electrostatic potential was estimated from both experimental and transferred multipolar models; it reveals an asymmetric character of the charge distribution across the molecule. This polarization effect is due to a substantial charge delocalization within the molecule. The molecular dipole moments derived from the experimental and transferred multipolar models are also compared with the liquid and gas-phase dipole moments. The substantial molecular dipole moment enhancements observed in the crystal environment originate from the crystal field and from intermolecular charge transfer induced and controlled by C-H···O and C-H···N intermolecular hydrogen bonds. The atomic forces were integrated over the atomic basins and compared for the two electron-density models.


Assuntos
Cumarínicos/química , Cristalografia por Raios X , Elétrons , Estrutura Molecular , Teoria Quântica , Eletricidade Estática
18.
PLoS One ; 7(9): e45525, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049810

RESUMO

Binding of substrates into the active site, often through complementarity of shapes and charges, is central to the specificity of an enzyme. In many cases, substrate binding induces conformational changes in the active site, promoting specific interactions between them. In contrast, non-substrates either fail to bind or do not induce the requisite conformational changes upon binding and thus no catalysis occurs. In principle, both lock and key and induced-fit binding can provide specific interactions between the substrate and the enzyme. In this study, we present an interesting case where cofactor binding pre-tunes the active site geometry to recognize only the cognate substrates. We illustrate this principle by studying the substrate binding and kinetic properties of Xylose Reductase from Debaryomyces hansenii (DhXR), an AKR family enzyme which catalyzes the reduction of carbonyl substrates using NADPH as co-factor. DhXR reduces D-xylose with increased specificity and shows no activity towards "non-substrate" sugars like L-rhamnose. Interestingly, apo-DhXR binds to D-xylose and L-rhamnose with similar affinity (K(d)∼5.0-10.0 mM). Crystal structure of apo-DhXR-rhamnose complex shows that L-rhamnose is bound to the active site cavity. L-rhamnose does not bind to holo-DhXR complex and thus, it cannot competitively inhibit D-xylose binding and catalysis even at 4-5 fold molar excess. Comparison of K(d) values with K(m) values reveals that increased specificity for D-xylose is achieved at the cost of moderately reduced affinity. The present work reveals a latent regulatory role for cofactor binding which was previously unknown and suggests that cofactor induced conformational changes may increase the complimentarity between D-xylose and active site similar to specificity achieved through induced-fit mechanism.


Assuntos
Aldeído Redutase/metabolismo , Coenzimas/metabolismo , Proteínas Fúngicas/metabolismo , Holoenzimas/metabolismo , NADP/metabolismo , Saccharomycetales/enzimologia , Xilose/metabolismo , Aldeído Redutase/química , Apoenzimas , Biocatálise , Domínio Catalítico , Coenzimas/química , Cristalografia por Raios X , Proteínas Fúngicas/química , Holoenzimas/química , Cinética , Modelos Moleculares , NADP/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ramnose/química , Ramnose/metabolismo , Saccharomycetales/química , Especificidade por Substrato , Xilose/química
19.
Acta Crystallogr A ; 68(Pt 6): 705-14, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23075613

RESUMO

The accuracy of electrostatic properties estimated from the Hansen-Coppens multipolar model was verified. Tests were carried out to determine whether the multipolar model is accurate enough to study changes of electrostatic properties under the influence of a crystal field. Perturbed and unperturbed electron densities of individual molecules of amino acids and dipeptides were obtained from cluster and perturbation theory calculations. This enabled the changes in electrostatic properties values caused by polarization of the electron density to be characterized. Multipolar models were then fitted to the subsequent theoretical electron densities. The study revealed that electrostatic properties obtained from the multipolar models are significantly different from those obtained directly from the theoretical densities. The electrostatic properties of isolated molecules are reproduced better by multipolar models than the electrostatic properties of molecules in a crystal. Changes of electrostatic properties caused by perturbation of electron density due to the crystal environment are barely described by the multipolar model. As a consequence, the electrostatic properties obtained from multipolar models fitted to the perturbed theoretical densities derived either from cluster or periodic calculations do not differ much from those estimated from multipolar models fitted to densities of isolated molecules. The main reason for this seems to be related to an inadequate description of electron-density polarization in the vicinity of the nuclei by the multipolar model.


Assuntos
Dipeptídeos/química , Cristalografia por Raios X , Elétrons , Ligação de Hidrogênio , Modelos Moleculares , Teoria Quântica , Difração de Raios X
20.
PLoS One ; 7(8): e42432, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22879982

RESUMO

Environmental protection through biological mechanisms that aid in the reductive immobilization of toxic metals (e.g., chromate and uranyl) has been identified to involve specific NADH-dependent flavoproteins that promote cell viability. To understand the enzyme mechanisms responsible for metal reduction, the enzyme kinetics of a putative chromate reductase from Gluconacetobacter hansenii (Gh-ChrR) was measured and the crystal structure of the protein determined at 2.25 Å resolution. Gh-ChrR catalyzes the NADH-dependent reduction of chromate, ferricyanide, and uranyl anions under aerobic conditions. Kinetic measurements indicate that NADH acts as a substrate inhibitor; catalysis requires chromate binding prior to NADH association. The crystal structure of Gh-ChrR shows the protein is a homotetramer with one bound flavin mononucleotide (FMN) per subunit. A bound anion is visualized proximal to the FMN at the interface between adjacent subunits within a cationic pocket, which is positioned at an optimal distance for hydride transfer. Site-directed substitutions of residues proposed to involve in both NADH and metal anion binding (N85A or R101A) result in 90-95% reductions in enzyme efficiencies for NADH-dependent chromate reduction. In comparison site-directed substitution of a residue (S118A) participating in the coordination of FMN in the active site results in only modest (50%) reductions in catalytic efficiencies, consistent with the presence of a multitude of side chains that position the FMN in the active site. The proposed proximity relationships between metal anion binding site and enzyme cofactors is discussed in terms of rational design principles for the use of enzymes in chromate and uranyl bioremediation.


Assuntos
Gluconacetobacter/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Ânions , Sítios de Ligação , Biocatálise/efeitos dos fármacos , Cristalografia por Raios X , Mononucleotídeo de Flavina/metabolismo , Flavoproteínas/química , Flavoproteínas/metabolismo , Gluconacetobacter/efeitos dos fármacos , Metais/metabolismo , Modelos Moleculares , NAD/farmacologia , Especificidade por Substrato/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA