Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Science ; 371(6534): 1154-1159, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33707263

RESUMO

Alterations of the mycobiota composition associated with Crohn's disease (CD) are challenging to link to defining elements of pathophysiology, such as poor injury repair. Using culture-dependent and -independent methods, we discovered that Debaryomyces hansenii preferentially localized to and was abundant within incompletely healed intestinal wounds of mice and inflamed mucosal tissues of CD human subjects. D. hansenii cultures from injured mice and inflamed CD tissues impaired colonic healing when introduced into injured conventionally raised or gnotobiotic mice. We reisolated D. hansenii from injured areas of these mice, fulfilling Koch's postulates. Mechanistically, D. hansenii impaired mucosal healing through the myeloid cell-specific type 1 interferon-CCL5 axis. Taken together, we have identified a fungus that inhabits inflamed CD tissue and can lead to dysregulated mucosal healing.


Assuntos
Doença de Crohn/microbiologia , Doença de Crohn/patologia , Debaryomyces/isolamento & purificação , Debaryomyces/fisiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Anfotericina B/farmacologia , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Quimiocina CCL5/metabolismo , Colo/microbiologia , Colo/patologia , Doença de Crohn/imunologia , Debaryomyces/crescimento & desenvolvimento , Feminino , Microbioma Gastrointestinal , Vida Livre de Germes , Humanos , Íleo/microbiologia , Íleo/patologia , Inflamação , Interferon Tipo I/metabolismo , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Gene ; 676: 227-242, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30025928

RESUMO

ATP-binding cassette (ABC) is one of the largest superfamily of proteins, which are ubiquitously present, performing variety of cellular functions. These proteins as drug transporters have been enticing substantial consideration because of their clinical importance. The present study focuses on genome wide identification of ABC proteins of an important halotolerant yeast Debaryomyces hansenii and explores their role in salt and drug tolerance. Our bioinformatics analysis identified a total of 30 putative ABC protein-coding genes whose expression at transcript level was confirmed by qRT-PCR. Our comparative phylogenetic analysis of nucleotide binding domains of D. hansenii and topology prediction categorized these proteins into six subfamilies; ABCB/MDR, ABCC/MRP, ABCD/ALDP, ABCF/YEF3, ABCE/RLI, and ABCG/PDR based on the nomenclature adopted by the Human Genome Organization (HUGO). Further, our transmembrane domain (TMD) predictions suggest that out of 30 ABC proteins, only 22 proteins possess either two or one TMD and hence are considered as membrane localized ABC proteins. Notably, our transcriptional dynamics of ABC proteins encoding genes following D. hansenii cells treatment with different salts and drugs concentrations illustrated variable transcriptional response of some of the genes, pointing to their role in salt and drug tolerance. This study first time provides a comprehensive inventory of the ABC proteins of a haploid D. hansenii which will be helpful for exploring their functional relevance.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Debaryomyces/metabolismo , Farmacorresistência Fúngica , Tolerância ao Sal , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Biologia Computacional/métodos , Debaryomyces/genética , Debaryomyces/crescimento & desenvolvimento , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Família Multigênica , Filogenia , Domínios Proteicos
3.
Int J Food Microbiol ; 264: 53-62, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29111498

RESUMO

Yeasts play a crucial role in cheese ripening. They contribute to the curd deacidification, the establishment of acid-sensitive bacterial communities, and flavour compounds production via proteolysis and catabolism of amino acids (AA). Negative yeast-yeast interaction was observed between the yeast Yarrowia lipolytica 1E07 (YL1E07) and the yeast Debaryomyces hansenii 1L25 (DH1L25) in a model cheese but need elucidation. YL1E07 and DH1L25 were cultivated in mono and co-cultures in a liquid synthetic medium (SM) mimicking the cheese environment and the growth inhibition of DH1L25 in the presence of YL1E07 was reproduced. We carried out microbiological, biochemical (lactose, lactate, AA consumption and ammonia production) and transcriptomic analyses by microarray technology to highlight the interaction mechanisms. We showed that the DH1L25 growth inhibition in the presence of YL1E07 was neither due to the ammonia production nor to the nutritional competition for the medium carbon sources between the two yeasts. The transcriptomic study was the key toward the comprehension of yeast-yeast interaction, and revealed that the inhibition of DH1L25 in co-culture is due to a decrease of the mitochondrial respiratory chain functioning.


Assuntos
Queijo/microbiologia , Debaryomyces/crescimento & desenvolvimento , Debaryomyces/metabolismo , Perfilação da Expressão Gênica/métodos , Yarrowia/crescimento & desenvolvimento , Yarrowia/metabolismo , Aminoácidos/metabolismo , Amônia/metabolismo , Técnicas de Cocultura , Debaryomyces/genética , Aromatizantes/análise , Microbiologia de Alimentos , Ácido Láctico/metabolismo , Lactose/metabolismo , Interações Microbianas/genética , Interações Microbianas/fisiologia , Transcriptoma/genética
4.
Fungal Genet Biol ; 100: 52-60, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28215981

RESUMO

Debaryomyces hansenii is a halotolerant and Na+-includer yeast that can be isolated from different food and low-water activity products. It has also been defined as a marine-occurring yeast but key aspects for this salt tolerant behavior are far from being understood. Here, we searched for clues helping to elucidate the basis of this ability. Our results on growth, Rb+ transport, total K+ and Na+ content and vacuolar fragmentation are compatible with a yeast species adapted to cope with salt stress. On the other hand, we confirmed the existence of D. hansenii strategies that are generally observed in sensitive organisms, such as the production of glycerol as a compatible solute and the efficient vacuolar sequestration of Na+. We propose a striking role of D. hansenii vacuoles in the maintenance of constant cytosolic K+ values, even in the presence of extracellular Na+ concentration values more than two orders of magnitude higher than extracellular K+. Finally, the ability to deal with cytosolic Na+ levels significantly higher than those found in S. cerevisiae, shows the existence of important and specific salt tolerance mechanisms and determinants in D. hansenii.


Assuntos
Adaptação Fisiológica/genética , Debaryomyces/metabolismo , Tolerância ao Sal , Vacúolos/metabolismo , Cátions/metabolismo , Debaryomyces/crescimento & desenvolvimento , Glicerol/metabolismo , Concentração de Íons de Hidrogênio , Potássio/metabolismo , Sódio/metabolismo , Vacúolos/química , Vacúolos/genética
5.
Food Microbiol ; 62: 188-195, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27889147

RESUMO

Speck is a meat product obtained from the deboned leg of pork that is salted, smoked and seasoned for four to six months. During speck seasoning, Eurotium rubrum and Penicillium solitum grow on the surface and collaborate with other moulds and tissue enzymes to produce the typical aroma. Both of these strains usually predominate over other moulds. However, moulds producing ochratoxins, such as Aspergillus ochraceus and Penicillium nordicum, can also co-grow on speck and produce ochratoxin A (OTA). Consequently, speck could represent a potential health risk for consumers. Because A. ochraceus and P. nordicum could represent a problem for artisanal speck production, the aim of this study was to inhibit these mould strains using Debaryomyces hansenii and Saccharomycopsis fibuligera. Six D. hansenii and six S. fibuligera strains were tested in vitro to inhibit A. ochraceus and P. nordicum. The D. hansenii DIAL 1 and S. fibuligera DIAL 3 strains demonstrated the highest inhibitory activity and were selected for in vivo tests. The strains were co-inoculated on fresh meat cuts for speck production with both of the OTA-producing moulds prior to drying and seasoning. At the end of seasoning (six months), OTA was not detected in the speck treated with both yeast strains. Because the yeasts did not adversely affect the speck odour or flavour, the strains are proposed as starters for the inhibition of ochratoxigenic moulds.


Assuntos
Antibiose , Aspergillus ochraceus/crescimento & desenvolvimento , Debaryomyces/crescimento & desenvolvimento , Produtos da Carne/microbiologia , Penicillium/crescimento & desenvolvimento , Carne Vermelha/microbiologia , Saccharomycopsis/crescimento & desenvolvimento , Animais , Aspergillus ochraceus/química , Aspergillus ochraceus/metabolismo , Agentes de Controle Biológico/metabolismo , Culinária , Debaryomyces/metabolismo , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Produtos da Carne/análise , Ocratoxinas/análise , Ocratoxinas/biossíntese , Penicillium/química , Saccharomycopsis/metabolismo , Suínos
6.
World J Microbiol Biotechnol ; 32(12): 207, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27807756

RESUMO

This study assessed the efficiency of Scheffersomyces amazonensis UFMG-CM-Y493T, cultured in xylose-supplemented medium (YPX) and rice hull hydrolysate (RHH), to convert xylose to xylitol under moderate and severe oxygen limitation. The highest xylitol yields of 0.75 and 1.04 g g-1 in YPX and RHH, respectively, were obtained under severe oxygen limitation. However, volumetric productivity in RHH was ninefold decrease than that in YPX medium. The xylose reductase (XR) and xylitol dehydrogenase (XDH) activities in the YPX cultures were strictly dependent on NADPH and NAD+ respectively, and were approximately 10% higher under severe oxygen limitation than under moderate oxygen limitation. This higher xylitol production observed under severe oxygen limitation can be attributed to the higher XR activity and shortage of the NAD+ needed by XDH. These results suggest that Sc. amazonensis UFMG-CM-Y493T is one of the greatest xylitol producers described to date and reveal its potential use in the biotechnological production of xylitol.


Assuntos
Debaryomyces/crescimento & desenvolvimento , Xilitol/biossíntese , Aldeído Redutase/metabolismo , Meios de Cultura/química , D-Xilulose Redutase/metabolismo , Debaryomyces/classificação , Debaryomyces/enzimologia , Fermentação , Proteínas Fúngicas/metabolismo , Microbiologia Industrial , NAD/metabolismo , NADP/metabolismo , Xilitol/metabolismo , Xilose/metabolismo
7.
Lett Appl Microbiol ; 59(6): 594-603, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25099389

RESUMO

UNLABELLED: We propose a model, based on the Gompertz equation, to describe the growth of yeasts colonies on agar medium. This model presents several advantages: (i) one equation describes the colony growth, which previously needed two separate ones (linear increase of radius and of the squared radius); (ii) a similar equation can be applied to total and viable cells, colony area or colony radius, because the number of total cells in mature colonies is proportional to their area; and (iii) its parameters estimate the cell yield, the cell concentration that triggers growth limitation and the effect of this limitation on the specific growth rate. To elaborate the model, area, total and viable cells of 600 colonies of Saccharomyces cerevisiae, Debaryomyces fabryi, Zygosaccharomyces rouxii and Rhodotorula glutinis have been measured. With low inocula, viable cells showed an initial short exponential phase when colonies were not visible. This phase was shortened with higher inocula. In visible or mature colonies, cell growth displayed Gompertz-type kinetics. It was concluded that the cells growth in colonies is similar to liquid cultures only during the first hours, the rest of the time they grow, with near-zero specific growth rates, at least for 3 weeks. SIGNIFICANCE AND IMPACT OF THE STUDY: Mathematical models used to predict microbial growth are based on liquid cultures data. Models describing growth on solid surfaces, highlighting the differences with liquids cultures, are scarce. In this work, we have demonstrated that a single Gompertz equation describes accurately the increase of the yeast colonies, up to the point where they reach their maximum size. The model can be used to quantify the differences in growth kinetics between solid and liquid media. Moreover, as all its parameters have biological meaning, it could be used to build secondary models predicting yeast growth on solid surfaces under several environmental conditions.


Assuntos
Debaryomyces/crescimento & desenvolvimento , Modelos Biológicos , Rhodotorula/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Zygosaccharomyces/crescimento & desenvolvimento , Meios de Cultura , Cinética , Viabilidade Microbiana
8.
Biochimie ; 102: 124-36, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24657599

RESUMO

Physiological uncoupling of mitochondrial oxidative phosphorylation (OxPhos) was studied in Debaryomyces hansenii. In other species, such as Yarrowia lipolytica and Saccharomyces cerevisiae, OxPhos can be uncoupled through differential expression of branched respiratory chain enzymes or by opening of a mitochondrial unspecific channel (ScMUC), respectively. However D. hansenii mitochondria, which contain both a branched respiratory chain and a mitochondrial unspecific channel (DhMUC), selectively uncouple complex I-dependent rate of oxygen consumption in the stationary growth phase. The uncoupled complex I-dependent respiration was only 20% of the original activity. Inhibition was not due to inactivation of complex I, lack of protein expression or to differential expression of alternative oxidoreductases. Furthermore, all other respiratory chain activities were normal. Decrease of complex I-dependent respiration was due to NAD(+) loss from the matrix, probably through an open of DhMUC. When NAD(+) was added back, coupled complex I-activity was recovered. NAD(+) re-uptake was independent of DhMUC opening and seemed to be catalyzed by a NAD(+)-specific transporter, which was sensitive to bathophenanthroline, bromocresol purple or pyridoxal-5'-phosphate as described for S. cerevisiae mitochondrial NAD(+) transporters. Loss of NAD(+) from the matrix through an open MUC is proposed as an additional mechanism to uncouple OxPhos.


Assuntos
Debaryomyces/crescimento & desenvolvimento , Transporte de Elétrons/genética , Fosforilação Oxidativa , Respiração Celular/genética , Debaryomyces/genética , Mitocôndrias/enzimologia , Mitocôndrias/genética , NAD/metabolismo , Oxirredutases/biossíntese , Oxirredutases/metabolismo , Consumo de Oxigênio , Saccharomyces cerevisiae
9.
Enzyme Microb Technol ; 53(4): 229-34, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23931687

RESUMO

The aim of this research was to study how the cell immobilization technique of forming foamed alginate gels influences the growth, vitality and metabolic activity of different yeasts. Two distinct strains were used, namely conventional yeast (exemplified by Saccharomyces cerevisiae) and a non-conventional strain (exemplified by Debaryomyces occidentalis). The encapsulation of the yeast cells was performed by the traditional process of droplet formation, but from a foamed alginate solution. The activities of two key enzymes, succinate dehydrogenase and pyruvate decarboxylase, together with the ATP content were measured in both the free and immobilized cells. This novel method of yeast cell entrapment had some notable effects. The number of living immobilized cells reached the level of 10(6)-10(7) per single bead, and was stable during the fermentation process. Reductions in both enzyme activity and ATP content were observed in all immobilized yeasts. However, S. cerevisiae showed higher levels of ATP and enzymatic activity than D. occidentalis. Fermentation trials with immobilized repitching cells showed that the tested yeasts adapted to the specific conditions. Nevertheless, the mechanical endurance of the carriers and the internal structure of the gel need to be improved to enable broad applications of alginate gels in industrial fermentation processes, especially with conventional yeasts. This is one of the few papers and patents that describe the technique of cell immobilization in foamed alginate and shows the fermentative capacities and activities of key enzymes in immobilized yeast cells.


Assuntos
Debaryomyces/crescimento & desenvolvimento , Debaryomyces/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Alginatos , Células Imobilizadas/metabolismo , Fermentação , Proteínas Fúngicas/metabolismo , Géis , Ácido Glucurônico , Ácidos Hexurônicos , Piruvato Descarboxilase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Succinato Desidrogenase/metabolismo
10.
J Food Sci ; 77(6): M337-42, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22583004

RESUMO

UNLABELLED: Statistical experimental designs were employed to optimize culture conditions for cold-adapted lysozyme production of a psychrophilic yeast Debaryomyces hansenii. In the first step of optimization using Plackett-Burman design (PBD), peptone, glucose, temperature, and NaCl were identified as significant variables that affected lysozyme production, the formula was further optimized using a four factor central composite design (CCD) to understand their interaction and to determine their optimal levels. A quadratic model was developed and validated. Compared to the initial level (18.8 U/mL), the maximum lysozyme production (65.8 U/mL) observed was approximately increased by 3.5-fold under the optimized conditions. PRACTICAL APPLICATION: Cold-adapted lysozymes production was first optimized using statistical experimental methods. A 3.5-fold enhancement of microbial lysozyme was gained after optimization. Such an improved production will facilitate the application of microbial lysozyme. Thus, D. hansenii lysozyme may be a good and new resource for the industrial production of cold-adapted lysozymes.


Assuntos
Debaryomyces/enzimologia , Conservantes de Alimentos/metabolismo , Proteínas Fúngicas/biossíntese , Muramidase/biossíntese , Regiões Antárticas , Temperatura Baixa , Debaryomyces/crescimento & desenvolvimento , Debaryomyces/isolamento & purificação , Fermentação , Tecnologia de Alimentos , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Cinética , Modelos Biológicos , Muramidase/metabolismo , Concentração Osmolar , Peptonas/metabolismo , Água do Mar/microbiologia , Cloreto de Sódio/metabolismo , Estatística como Assunto
11.
N Biotechnol ; 29(3): 421-7, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807126

RESUMO

This study develops a system for the efficient valorisation of hemicellulosic hydrolysates of vineshoot trimmings. By connecting two reactors of 2L and 10L, operational conditions were set up for the sequential production of lactic acid and xylitol in continuous fermentation, considering the dependence of the main metabolites and fermentation parameters on the dilution rate. In the first bioreactor, Lactobacillus rhamnosus consumed all the glucose to produce lactic acid at 31.5°C, with 150rpm and 1L of working volume as the optimal conditions. The residual sugars were employed for the xylose to xylitol bioconversion by Debaryomyces hansenii in the second bioreactor at 30°C, 250rpm and an air-flow rate of 2Lmin(-1). Several steady states were reached at flow rates (F) in the range of 0.54-5.33mLmin(-1), leading to dilution rates (D) ranging from 0.032 to 0.320h(-1) in Bioreactor 1 and from 0.006 to 0.064h(-1) in Bioreactor 2. The maximum volumetric lactic acid productivity (Q(P LA)=2.908gL(-1)h(-1)) was achieved under D=0.266h(-1) (F=4.44mLmin(-1)); meanwhile, the maximum production of xylitol (5.1gL(-1)), volumetric xylitol productivity (Q(P xylitol)=0.218gL(-1)h(-1)), volumetric rate of xylose consumption (Q(S xylose)=0.398gL(-1)h(-1)) and product yield (0.55gg(-1)) were achieved at an intermediate dilution rate of 0.043h(-1) (F=3.55mLmin(-1)). Under these conditions, ethanol, which was the main by-product of the fermentation, was produced in higher amounts (1.9gL(-1)). Finally, lactic acid and xylitol were effectively recovered by conventional procedures.


Assuntos
Reatores Biológicos/microbiologia , Debaryomyces/crescimento & desenvolvimento , Ácido Láctico/biossíntese , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Polissacarídeos/metabolismo , Vitis/química , Xilitol/biossíntese , Hidrólise
12.
FEMS Yeast Res ; 11(8): 643-52, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22093748

RESUMO

The yeast Debaryomyces hansenii was investigated for its production of alcohol-based quorum sensing (QS) molecules including the aromatic alcohols phenylethanol, tyrosol, tryptophol and the aliphatic alcohol farnesol. Debaryomyces hansenii produced phenylethanol and tyrosol, which were primarily detected from the end of exponential phase indicating that they are potential QS molecules in D. hansenii as previously shown for other yeast species. Yields of phenylethanol and tyrosol produced by D. hansenii were, however, lower than those produced by Candida albicans and Saccharomyces cerevisiae and varied with growth conditions such as the availability of aromatic amino acids, ammonium sulphate, NaCl, pH and temperature. Tryptophol was only produced in the presence of tryptophane, whereas farnesol in general was not detectable. Especially, the type strain of D. hansenii (CBS767) had good adhesion and sliding motility abilities, which seemed to be related to a higher hydrophobicity of the cell surface of D. hansenii (CBS767) rather than the ability to form pseudomycelium. Addition of phenylethanol, tyrosol, tryptophol and farnesol was found to influence both adhesion and sliding motility of D. hansenii.


Assuntos
Álcoois/metabolismo , Biofilmes/crescimento & desenvolvimento , Debaryomyces/fisiologia , Percepção de Quorum/fisiologia , Álcoois/isolamento & purificação , Adesão Celular/fisiologia , Cromatografia Líquida de Alta Pressão , Debaryomyces/crescimento & desenvolvimento , Farneseno Álcool/isolamento & purificação , Farneseno Álcool/metabolismo , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Indóis/isolamento & purificação , Indóis/metabolismo , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/isolamento & purificação , Álcool Feniletílico/metabolismo , Poliestirenos , Espectrometria de Massas em Tandem , Fatores de Tempo
13.
J Sci Food Agric ; 90(13): 2168-77, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20629106

RESUMO

BACKGROUND: Vinasses, the main liquid wastes from the distillation process of grape marc and wine lees, are acidic effluents with high organic content, including acids, carbohydrates, phenols, and unsaturated compounds with high chemical oxygen demand, biological oxygen demand and solid concentrations. These wastes can be revalued to provide additional benefits when they are employed as feedstock of some compounds including tartaric acid, calcium tartrate and economic nutrients for the elaboration of fermentable broths. RESULT: This study attempts to recover tartaric acid and calcium tartrate from vinasses. All the tartaric acid initially solubilised was recovered in both processes. The residual streams can be successfully employed as economic nutrients for the xylose to xylitol bioconversion, achieving higher global volumetric productivities (Q(P, xylitol) = 0.232 g L(-1) h(-1)) and products yields (Y(xylitol/S) = 0.57 g g(-1)) than fermentations carried out using commercial nutrients (Q(P, xylitol) = 0.193 g L(-1) h(-1) and Y(xylitol/S) = 0.55 g g(-1) respectively). CONCLUSION: Tartaric acid can be recovered from vinasses in the form of tartaric acid crystals and calcium tartrate. The residual streams generated in the process can be used as economic nutrients for the production of xylitol by D. hansenii.


Assuntos
Antioxidantes/isolamento & purificação , Fermentação , Manipulação de Alimentos/métodos , Resíduos Industriais/análise , Edulcorantes/metabolismo , Tartaratos/isolamento & purificação , Xilitol/metabolismo , Antioxidantes/análise , Antioxidantes/economia , Reatores Biológicos/economia , Debaryomyces/crescimento & desenvolvimento , Debaryomyces/metabolismo , Indústria de Processamento de Alimentos/economia , Frutas/química , Resíduos Industriais/economia , Cinética , Edulcorantes/análise , Edulcorantes/economia , Tartaratos/análise , Tartaratos/economia , Vitis/química , Vinho , Xilitol/análise , Xilitol/economia
14.
Extremophiles ; 13(5): 793-805, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19593594

RESUMO

Debaryomyces nepalensis NCYC 3413, a food spoiling yeast isolated from rotten apple, has been previously demonstrated as halotolerant yeast. In the present study, we assessed its growth, change in cell size, and measured the intracellular polyol and cations (Na(+) or K(+)) accumulated during growth in the absence and presence of different concentrations of salts (NaCl and KCl). Cells could tolerate 2 M NaCl and KCl in defined medium. Scanning electron microscopic results showed linear decrease in mean cell diameter with increase in medium salinity. Cells accumulated high amounts of K(+) during growth at high concentrations of KCl. However, it accumulated low amounts of Na(+) and high amounts of K(+) when grown in the presence of NaCl. Cells grown in the absence of salt showed rapid influx of Na(+)/K(+) on incubation with high salt. On incubation with 2 M KCl, cells grown at 2 M NaCl showed an immediate efflux of Na(+) and rapid uptake of K(+) and vice versa. To withstand the salt stress, osmotic adjustment of intracellular cation was accompanied by intracellular accumulation of polyol (glycerol, arabitol, and sorbitol). Based on our result, we hypothesize that there exists a balanced efflux and synthesis of osmolytes when D. nepalensis was exposed to hypoosmotic and hyperosmotic stress conditions, respectively. Our findings suggest that D. nepalensis is an Na(+) excluder yeast and it has an efficient transport system for sodium extrusion.


Assuntos
Debaryomyces/metabolismo , Adaptação Fisiológica , Debaryomyces/crescimento & desenvolvimento , Debaryomyces/ultraestrutura , Microbiologia de Alimentos , Transporte de Íons , Malus/microbiologia , Microscopia Eletrônica de Varredura , Osmose , Pressão Osmótica , Potássio/metabolismo , Salinidade , Sódio/metabolismo , Álcoois Açúcares/metabolismo
15.
Bioprocess Biosyst Eng ; 32(6): 747-54, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19184115

RESUMO

To develop a new enzymatic xylose-to-xylitol conversion, deeper knowledge on the regulation of xylose reductase (XR) is needed. To this purpose, a new strain of Debaryomyces hansenii (UFV-170), which proved a promising xylitol producer, was cultivated in semi-synthetic media containing different carbon sources, specifically three aldo-hexoses (D-glucose, D-galactose and D-mannose), a keto-hexose (D-fructose), a keto-pentose (D-xylose), three aldo-pentoses (D-arabinose, L-arabinose and D-ribose), three disaccharides (maltose, lactose and sucrose) and a pentitol (xylitol). The best substrate was lactose on which cell concentration reached about 20 g l(-1) dry weight (DW), while the highest specific growth rates (0.58-0.61 h(-1)) were detected on lactose, D-mannose, D-glucose and D-galactose. The highest specific activity of XR (0.24 U mg(-1)) was obtained in raw extracts of cells grown on D-xylose and harvested in the stationary growth phase. When grown on cotton husk hemicellulose hydrolyzates, cells exhibited XR activities five to seven times higher than on semi-synthetic media.


Assuntos
Aldeído Redutase/metabolismo , Debaryomyces/crescimento & desenvolvimento , Debaryomyces/metabolismo , Polissacarídeos/metabolismo , Metabolismo dos Carboidratos , Meios de Cultura , Debaryomyces/enzimologia , Fermentação , Tecnologia de Alimentos , Gossypium/química , Hidrólise , Cinética , Especificidade por Substrato , Xilitol/biossíntese , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA