Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669299

RESUMO

Apiculate yeasts belonging to the genus Hanseniaspora are commonly isolated from viticultural settings and often dominate the initial stages of grape must fermentations. Although considered spoilage yeasts, they are now increasingly becoming the focus of research, with several whole-genome sequencing studies published in recent years. However, tools for their molecular genetic manipulation are still lacking. Here, we report the development of a tool for the genetic modification of Hanseniaspora uvarum. This was employed for the disruption of the HuATF1 gene, which encodes a putative alcohol acetyltransferase involved in acetate ester formation. We generated a synthetic marker gene consisting of the HuTEF1 promoter controlling a hygromycin resistance open reading frame (ORF). This new marker gene was used in disruption cassettes containing long-flanking (1000 bp) homology regions to the target locus. By increasing the antibiotic concentration, transformants were obtained in which both alleles of the putative HuATF1 gene were deleted in a diploid H. uvarum strain. Phenotypic characterisation including fermentation in Müller-Thurgau must showed that the null mutant produced significantly less acetate ester, particularly ethyl acetate. This study marks the first steps in the development of gene modification tools and paves the road for functional gene analyses of this yeast.


Assuntos
Deleção de Genes , Engenharia Genética/métodos , Hanseniaspora/enzimologia , Hanseniaspora/genética , Microrganismos Geneticamente Modificados/genética , Proteínas/genética , Acetatos/metabolismo , Alelos , Fermentação/genética , Genes Fúngicos , Fases de Leitura Aberta , Fenótipo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vitis/metabolismo , Vinho
2.
Tuberculosis (Edinb) ; 115: 63-66, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30948178

RESUMO

The Mycobacterium tuberculosis mec+-cysO-cysM gene cluster was shown to be part of a novel cysteine biosynthesis pathway in vitro, but little is known about its essentiality or role in M. tuberculosis physiology. In this study, we generate a knock out of the mec+-cysO-cysM gene cluster in M. tuberculosis and show that the gene cluster is not essential under a variety of conditions, suggesting redundancy in pathways for cysteine biosynthesis in M. tuberculosis. The cysteine biosynthesis gene cluster is essential for resistance for clofazimine, a peroxide-producing anti-leprosy drug. Therefore, although under most conditions the pathway is not essential, it likely has an important role in defense against oxidative stress in M. tuberculosis.


Assuntos
Antituberculosos/farmacologia , Clofazimina/farmacologia , Cisteína/biossíntese , Genes Bacterianos/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Vias Biossintéticas/genética , Cisteína/genética , Farmacorresistência Bacteriana/genética , Deleção de Genes , Hansenostáticos/farmacologia , Testes de Sensibilidade Microbiana , Família Multigênica/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos
3.
Appl Environ Microbiol ; 85(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530711

RESUMO

A number of strategies have been developed to mine novel natural products based on biosynthetic gene clusters and there have been dozens of successful cases facilitated by the development of genomic sequencing. During our study on biosynthesis of the antitumor polyketide kosinostatin (KST), we found that the genome of Micromonospora sp. strain TP-A0468, the producer of KST, contains other potential polyketide gene clusters, with no encoded products detected. Deletion of kst cluster led to abolishment of KST and the enrichment of several new compounds, which were isolated and characterized as 16-demethylrifamycins (referred to here as compounds 3 to 6). Transcriptional analysis demonstrated that the expression of the essential genes related to the biosynthesis of compounds 3 to 6 was comparable to the level in the wild-type and in the kst cluster deletion strain. This indicates that the accumulation of these compounds was due to the redirection of metabolic flux rather than transcriptional activation. Genetic disruption, chemical complementation, and bioinformatic analysis revealed that the production of compounds 3 to 6 was accomplished by cross talk between the two distantly placed polyketide gene clusters pks3 and M-rif This finding not only enriches the analogue pool and the biosynthetic diversity of rifamycins but also provides an auxiliary strategy for natural product discovery through genome mining in polyketide-producing microorganisms.IMPORTANCE Natural products are essential in the development of novel clinically used drugs. Discovering new natural products and modifying known compounds are still the two main ways to generate new candidates. Here, we have discovered several rifamycins with varied skeleton structures by redirecting the metabolic flux from the predominant polyketide biosynthetic pathway to the rifamycin pathway in the marine actinomycetes species Micromonospora sp. strain TP-A0468. Rifamycins are indispensable chemotherapeutics in the treatment of various diseases such as tuberculosis, leprosy, and AIDS-related mycobacterial infections. This study exemplifies a useful method for the discovery of cryptic natural products in genome-sequenced microbes. Moreover, the 16-demethylrifamycins and their genetically manipulable producer provide a new opportunity in the construction of novel rifamycin derivates to aid in the defense against the ever-growing drug resistance of Mycobacterium tuberculosis.


Assuntos
Aminoglicosídeos/biossíntese , Aminoglicosídeos/genética , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Descoberta de Drogas , Micromonospora/genética , Micromonospora/metabolismo , Aminoglicosídeos/farmacologia , Sequência de Bases , Vias Biossintéticas/genética , Deleção de Genes , Lactamas Macrocíclicas/metabolismo , Família Multigênica/genética , Policetídeos/metabolismo , Rifamicinas/biossíntese , Metabolismo Secundário/genética
4.
Infect Immun ; 82(12): 5317-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25287928

RESUMO

Mycobacteria, the etiological agents of tuberculosis and leprosy, have coevolved with mammals for millions of years and have numerous ways of suppressing their host's immune response. It has been suggested that mycobacteria may contain genes that reduce the host's ability to elicit CD8(+) T cell responses. We screened 3,290 mutant Mycobacterium bovis bacillus Calmette Guerin (BCG) strains to identify genes that decrease major histocompatibility complex (MHC) class I presentation of mycobacterium-encoded epitope peptides. Through our analysis, we identified 16 mutant BCG strains that generated increased transgene product-specific CD8(+) T cell responses. The genes disrupted in these mutant strains had disparate predicted functions. Reconstruction of strains via targeted deletion of genes identified in the screen recapitulated the enhanced immunogenicity phenotype of the original mutant strains. When we introduced the simian immunodeficiency virus (SIV) gag gene into several of these novel BCG strains, we observed enhanced SIV Gag-specific CD8(+) T cell responses in vivo. This study demonstrates that mycobacteria carry numerous genes that act to dampen CD8(+) T cell responses and suggests that genetic modification of these genes may generate a novel group of recombinant BCG strains capable of serving as more effective and immunogenic vaccine vectors.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Deleção de Genes , Mycobacterium bovis/genética , Mycobacterium bovis/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/imunologia , Animais , Tolerância Imunológica , Camundongos Endogâmicos C57BL , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
5.
Proc Natl Acad Sci U S A ; 111(37): 13264-71, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25197070

RESUMO

Research on tuberculosis and leprosy was revolutionized by the development of a plasmid transformation system in the fast-growing surrogate, Mycobacterium smegmatis. This transformation system was made possible by the successful isolation of a M. smegmatis mutant strain mc(2)155, whose efficient plasmid transformation (ept) phenotype supported the replication of Mycobacterium fortuitum pAL5000 plasmids. In this report, we identified the EptC gene, the loss of which confers the ept phenotype. EptC shares significant amino acid sequence homology and domain structure with the MukB protein of Escherichia coli, a structural maintenance of chromosomes (SMC) protein. Surprisingly, M. smegmatis has three paralogs of SMC proteins: EptC and MSMEG_0370 both share homology with Gram-negative bacterial MukB; and MSMEG_2423 shares homology with Gram-positive bacterial SMCs, including the single SMC protein predicted for Mycobacterium tuberculosis and Mycobacterium leprae. Purified EptC was shown to bind ssDNA and stabilize negative supercoils in plasmid DNA. Moreover, an EptC-mCherry fusion protein was constructed and shown to bind to DNA in live mycobacteria, and to prevent segregation of plasmid DNA to daughter cells. To our knowledge, this is the first report of impaired plasmid maintenance caused by a SMC homolog, which has been canonically known to assist the segregation of genetic materials.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium fortuitum/metabolismo , Mycobacterium smegmatis/metabolismo , Plasmídeos/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Biologia Computacional , Deleção de Genes , Genes Bacterianos , Dados de Sequência Molecular , Mutação/genética , Mycobacterium smegmatis/genética , Fenótipo , Homologia de Sequência de Aminoácidos , Transformação Genética
6.
PLoS One ; 9(1): e84926, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465451

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is known to play a role in the pathogenesis of various diseases including Parkinson disease, morbus Crohn, leprosy and cancer. LRRK2 is suggested to be involved in a number of cell biological processes such as vesicular trafficking, transcription, autophagy and lysosomal pathways. Recent histological studies of lungs of LRRK2 knock-out (LRRK2 -/-) mice revealed significantly enlarged lamellar bodies (LBs) in alveolar type II (ATII) epithelial cells. LBs are large, lysosome-related storage organelles for pulmonary surfactant, which is released into the alveolar lumen upon LB exocytosis. In this study we used high-resolution, subcellular live-cell imaging assays to investigate whether similar morphological changes can be observed in primary ATII cells from LRRK2 -/- rats and whether such changes result in altered LB exocytosis. Similarly to the report in mice, ATII cells from LRRK2 -/- rats contained significantly enlarged LBs resulting in a >50% increase in LB volume. Stimulation of ATII cells with ATP elicited LB exocytosis in a significantly increased proportion of cells from LRRK2 -/- animals. LRRK2 -/- cells also displayed increased intracellular Ca(2+) release upon ATP treatment and significant triggering of LB exocytosis. These findings are in line with the strong Ca(2+)-dependence of LB fusion activity and suggest that LRRK2 -/- affects exocytic response in ATII cells via modulating intracellular Ca(2+) signaling. Post-fusion regulation of surfactant secretion was unaltered. Actin coating of fused vesicles and subsequent vesicle compression to promote surfactant expulsion were comparable in cells from LRRK2 -/- and wt animals. Surprisingly, surfactant (phospholipid) release from LRRK2 -/- cells was reduced following stimulation of LB exocytosis possibly due to impaired LB maturation and surfactant loading of LBs. In summary our results suggest that LRRK2 -/- affects LB size, modulates intracellular Ca(2+) signaling and promotes LB exocytosis upon stimulation of ATII cells with ATP.


Assuntos
Sinalização do Cálcio , Exocitose/genética , Organelas/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Biomarcadores/metabolismo , Cálcio/metabolismo , Exocitose/efeitos dos fármacos , Deleção de Genes , Expressão Gênica , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Organelas/efeitos dos fármacos , Organelas/ultraestrutura , Proteínas Serina-Treonina Quinases/genética , Alvéolos Pulmonares/patologia , Ratos , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura
7.
Infect Immun ; 81(11): 4160-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23980107

RESUMO

Expression of the lspB-lspA2 operon encoding a virulence-related two-partner secretion system in Haemophilus ducreyi 35000HP is directly regulated by the CpxRA regulatory system (M. Labandeira-Rey, J. R. Mock, and E. J. Hansen, Infect. Immun. 77:3402-3411, 2009). In the present study, we show that this secretion system is also regulated by the small nucleoid-associated protein Fis. Inactivation of the H. ducreyi fis gene resulted in a reduction in expression of both the H. ducreyi LspB and LspA2 proteins. DNA microarray experiments showed that a H. ducreyi fis deletion mutant exhibited altered expression levels of genes encoding other important H. ducreyi virulence factors, including DsrA and Flp1, suggesting a possible global role for Fis in the control of virulence in this obligate human pathogen. While the H. ducreyi Fis protein has a high degree of sequence and structural similarity to the Fis proteins of other bacteria, its temporal pattern of expression was very different from that of enterobacterial Fis proteins. The use of a lacZ-based transcriptional reporter provided evidence which indicated that the H. ducreyi Fis homolog is a positive regulator of gyrB, a gene that is negatively regulated by Fis in enteric bacteria. Taken together, the Fis protein expression data and the observed regulatory effects of Fis in H. ducreyi suggest that this small DNA binding protein has a regulatory role in H. ducreyi which may differ in substantial ways from that of other Fis proteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas de Bactérias/biossíntese , Fator Proteico para Inversão de Estimulação/metabolismo , Regulação Bacteriana da Expressão Gênica , Haemophilus ducreyi/genética , Óperon , Fusão Gênica Artificial , Fator Proteico para Inversão de Estimulação/genética , Deleção de Genes , Perfilação da Expressão Gênica , Genes Reporter , Lectinas/biossíntese , Análise em Microsséries , Transcrição Gênica , Regulação para Cima , Fatores de Virulência/metabolismo , beta-Galactosidase/análise , beta-Galactosidase/genética
8.
J Bacteriol ; 195(15): 3486-502, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23729647

RESUMO

Haemophilus ducreyi causes chancroid, a genital ulcer disease that facilitates the transmission of human immunodeficiency virus type 1. In humans, H. ducreyi is surrounded by phagocytes and must adapt to a hostile environment to survive. To sense and respond to environmental cues, bacteria frequently use two-component signal transduction (2CST) systems. The only obvious 2CST system in H. ducreyi is CpxRA; CpxR is a response regulator, and CpxA is a sensor kinase. Previous studies by Hansen and coworkers showed that CpxR directly represses the expression of dsrA, the lspB-lspA2 operon, and the flp operon, which are required for virulence in humans. They further showed that CpxA functions predominantly as a phosphatase in vitro to maintain the expression of virulence determinants. Since a cpxA mutant is avirulent while a cpxR mutant is fully virulent in humans, CpxA also likely functions predominantly as a phosphatase in vivo. To better understand the role of H. ducreyi CpxRA in controlling virulence determinants, here we defined genes potentially regulated by CpxRA by using RNA-Seq. Activation of CpxR by deletion of cpxA repressed nearly 70% of its targets, including seven established virulence determinants. Inactivation of CpxR by deletion of cpxR differentially regulated few genes and increased the expression of one virulence determinant. We identified a CpxR binding motif that was enriched in downregulated but not upregulated targets. These data reinforce the hypothesis that CpxA phosphatase activity plays a critical role in controlling H. ducreyi virulence in vivo. Characterization of the downregulated genes may offer new insights into pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Haemophilus ducreyi/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Virulência/biossíntese , Proteínas de Bactérias/genética , Deleção de Genes , Perfilação da Expressão Gênica , Fosfoproteínas Fosfatases/genética , Proteínas Quinases/genética , Regulon , Proteínas Repressoras/genética , Ativação Transcricional
9.
J Bacteriol ; 195(7): 1610-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23292779

RESUMO

In Mycobacterium, multidrug efflux pumps can be associated with intrinsic drug resistance. Comparison of putative mycobacterial transport genes revealed a single annotated open reading frame (ORF) for a multidrug and toxic compound extrusion (MATE) family efflux pump in all sequenced mycobacteria except Mycobacterium leprae. Since MATE efflux pumps function as multidrug efflux pumps by conferring resistance to structurally diverse antibiotics and DNA-damaging chemicals, we studied this gene (MSMEG_2631) in M. smegmatis mc(2)155 and determined that it encodes a MATE efflux system that contributes to intrinsic resistance of Mycobacterium. We propose that the MSMEG_2631 gene be named mmp, for mycobacterial MATE protein. Biolog Phenotype MicroArray data indicated that mmp deletion increased susceptibility for phleomycin, bleomycin, capreomycin, amikacin, kanamycin, cetylpyridinium chloride, and several sulfa drugs. MSMEG_2619 (efpA) and MSMEG_3563 mask the effect of mmp deletion due to overlapping efflux capabilities. We present evidence that mmp is a part of an MSMEG_2626-2628-2629-2630-2631 operon regulated by a strong constitutive promoter, initiated from a single transcription start site. All together, our results show that M. smegmatis constitutively encodes an Na(+)-dependent MATE multidrug efflux pump from mmp in an operon with putative genes encoding proteins for apparently unrelated functions.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium smegmatis/metabolismo , Técnicas de Tipagem Bacteriana , Deleção de Genes , Proteínas de Membrana Transportadoras/genética , Análise em Microsséries , Mycobacterium smegmatis/genética , Óperon , Fenótipo , Regiões Promotoras Genéticas , Especificidade por Substrato , Sítio de Iniciação de Transcrição
10.
J Biol Chem ; 286(28): 24616-25, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21592957

RESUMO

Phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs) are structurally related lipids noncovalently bound to the outer cell wall layer of Mycobacterium tuberculosis, Mycobacterium leprae, and several opportunistic mycobacterial human pathogens. PDIMs and PGLs are important effectors of virulence. Elucidation of the biosynthesis of these complex lipids will not only expand our understanding of mycobacterial cell wall biosynthesis, but it may also illuminate potential routes to novel therapeutics against mycobacterial infections. We report the construction of an in-frame deletion mutant of tesA (encoding a type II thioesterase) in the opportunistic human pathogen Mycobacterium marinum and the characterization of this mutant and its corresponding complemented strain control in terms of PDIM and PGL production. The growth and antibiotic susceptibility of these strains were also probed and compared with the parental wild-type strain. We show that deletion of tesA leads to a mutant that produces only traces of PDIMs and PGLs, has a slight growth yield increase and displays a substantial hypersusceptibility to several antibiotics. We also provide a robust model for the three-dimensional structure of M. marinum TesA (TesAmm) and demonstrate that a Ser-to-Ala substitution in the predicted catalytic Ser of TesAmm renders a mutant that recapitulates the phenotype of the tesA deletion mutant. Overall, our studies demonstrate a critical role for tesA in mycobacterial biology, advance our understanding of the biosynthesis of an important group of polyketide synthase-derived mycobacterial lipids, and suggest that drugs aimed at blocking PDIM and/or PGL production might synergize with antibiotic therapy in the control of mycobacterial infections.


Assuntos
Parede Celular/enzimologia , Farmacorresistência Bacteriana/fisiologia , Ácido Graxo Sintases/metabolismo , Glicolipídeos/biossíntese , Lipídeos/biossíntese , Mycobacterium/enzimologia , Tioléster Hidrolases/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Parede Celular/genética , Desenho de Fármacos , Ácido Graxo Sintases/genética , Deleção de Genes , Glicolipídeos/genética , Humanos , Lipídeos/genética , Mycobacterium/genética , Mycobacterium/patogenicidade , Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/enzimologia , Infecções por Mycobacterium/genética , Tioléster Hidrolases/genética
11.
J Bacteriol ; 189(24): 8818-27, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17933896

RESUMO

Mycobacterium leprae, a major human pathogen, grows poorly at 37 degrees C. The basis for its inability to survive at elevated temperatures was investigated. We determined that M. leprae lacks a protective heat shock response as a result of the lack of transcriptional induction of the alternative sigma factor genes sigE and sigB and the major heat shock operons, HSP70 and HSP60, even though heat shock promoters and regulatory circuits for these genes appear to be intact. M. leprae sigE was found to be capable of complementing the defective heat shock response of mycobacterial sigE knockout mutants only in the presence of a functional mycobacterial sigH, which orchestrates the mycobacterial heat shock response. Since the sigH of M. leprae is a pseudogene, these data support the conclusion that a key aspect of the defective heat shock response in M. leprae is the absence of a functional sigH. In addition, 68% of the genes induced during heat shock in M. tuberculosis were shown to be either absent from the M. leprae genome or were present as pseudogenes. Among these is the hsp/acr2 gene, whose product is essential for M. tuberculosis survival during heat shock. Taken together, these results suggest that the reduced ability of M. leprae to survive at elevated temperatures results from the lack of a functional transcriptional response to heat shock and the absence of a full repertoire of heat stress response genes, including sigH.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium leprae/fisiologia , Pseudogenes , Fator sigma/genética , Proteínas de Bactérias/biossíntese , Chaperonina 60/biossíntese , Deleção de Genes , Teste de Complementação Genética , Proteínas de Choque Térmico HSP70/biossíntese , Transtornos de Estresse por Calor , Temperatura Alta , Mycobacterium leprae/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Fator sigma/biossíntese , alfa-Cristalinas/genética , alfa-Cristalinas/fisiologia
12.
Genome Res ; 17(8): 1178-85, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17623808

RESUMO

We have reconstructed the gene content and order of the last common ancestor of the human pathogens Mycobacterium leprae and Mycobacterium tuberculosis. During the reductive evolution of M. leprae, 1537 of 2977 ancestral genes were lost, among which we found 177 previously unnoticed pseudogenes. We find evidence that a massive gene inactivation took place very recently in the M. leprae lineage, leading to the loss of hundreds of ancestral genes. A large proportion of their nucleotide content ( approximately 89%) still remains in the genome, which allowed us to characterize and date them. The age of the pseudogenes was computed using a new methodology based on the rates and patterns of substitution in the pseudogenes and functional orthologous genes of closely related genomes. The position of the genes that were lost in the ancestor's genome revealed that the process of function loss and degradation mainly took place through a gene-to-gene inactivation process, followed by the gradual loss of their DNA. This suggests a scenario of massive genome reduction through many nearly simultaneous pseudogenization events, leading to a highly specialized pathogen.


Assuntos
Evolução Molecular , Deleção de Genes , Genoma Bacteriano , Mycobacterium leprae/genética , Mycobacterium tuberculosis/genética , Biologia Computacional , DNA Fúngico/metabolismo , Filogenia
13.
FEMS Yeast Res ; 7(5): 657-64, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17425674

RESUMO

NAD holds a key position in metabolism and cellular regulatory events as a major redox carrier and a signalling molecule. NAD biosynthesis pathways have been reconstructed and compared in seven yeast species with completely sequenced genomes, including Saccharomyces cerevisiae, Kluyveromyces lactis, Candida glabrata, Debaryomyces hansenii, Candida albicans, Yarrowia lipolytica and Schizosaccharomyces pombe. Both amino acid and nucleotide sequence similarity analysis in silico indicated that de novo NAD biosynthesis might not exist in K. lactis, C. glabrata and Schiz. pombe, while other species have the kynurenine pathway. It also showed that the NAD salvage pathway via nicotinic acid and nicotinic acid mononucleotide is conserved in all of these yeasts. Deletion of KlNPT1 (the gene for nicotinate phosphoribosyl-transferase) is lethal, which demonstrates that this salvage pathway, utilizing exogenous nicotinic acid, is the unique route to synthesize NAD in K. lactis. The results suggested that the basis of the variation of niacin requirements in yeasts lies in their different combinations of NAD biosynthesis pathways. The de novo pathway is absent but the salvage pathway is conserved in niacin-negative yeasts, while both pathways coexist in niacin-positive yeasts.


Assuntos
Ascomicetos/crescimento & desenvolvimento , NAD/biossíntese , Niacina/metabolismo , Ascomicetos/classificação , Ascomicetos/metabolismo , Deleção de Genes , Genes Fúngicos , Genoma Fúngico , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Especificidade da Espécie
14.
J Bacteriol ; 188(18): 6669-79, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16952959

RESUMO

The twin arginine translocation (Tat) system is used by many bacteria to export fully folded proteins containing cofactors. Here, we show genetically that this system is essential for Mycobacterium tuberculosis, as the tatAC operon and tatB genes could be inactivated only in partially diploid strains. Using comparative genomics, the rv2525c gene of M. tuberculosis was identified as encoding a histidine-rich protein, with a twin arginine signal peptide, and orthologous genes were shown to be present in several but not all actinobacterial species. Conservation of this gene by Mycobacterium leprae, which has undergone reductive evolution, suggested an important role for rv2525c. An rv2525c knockout mutant was constructed, and biochemical analysis indicated that the mature Rv2525c protein is secreted. Upon exposure to antituberculous drugs, rv2525c expression is significantly up-regulated together with those of other genes involved in cell wall biogenesis. Phenotypic comparison of the mutant with the parental strain revealed an increase in susceptibility to some beta-lactam antibiotics and, despite slower growth in vitro, enhanced virulence in both cellular and murine models of tuberculosis. The Tat system thus contributes in multiple ways to survival of the tubercle bacillus.


Assuntos
Proteínas de Bactérias/fisiologia , Deleção de Genes , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Virulência/genética , beta-Lactamas/farmacologia , Sequência de Aminoácidos , Animais , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Contagem de Colônia Microbiana , Feminino , Ordem dos Genes , Genes Bacterianos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mycobacterium tuberculosis/patogenicidade , Transporte Proteico/genética , Alinhamento de Sequência , Baço/microbiologia , Análise de Sobrevida , Tuberculose/microbiologia
15.
Mol Biol Evol ; 23(2): 310-6, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16237210

RESUMO

During the adaptation of an organism to a parasitic lifestyle, various gene functions may be rendered superfluous due to the fact that the host may supply these needs. As a consequence, obligate symbiotic bacterial pathogens tend to undergo reductive genomic evolution through gene death (nonfunctionalization or pseudogenization) and deletion. Here, we examine the evolutionary sequence of gene-death events during the process of genome miniaturization in three bacterial species that have experienced extensive genome reduction: Mycobacterium leprae, Shigella flexneri, and Salmonella typhi. We infer that in all three lineages, the distribution of functional categories is similar in pseudogenes and genes but different from that of absent genes. Based on an analysis of evolutionary distances, we propose a two-step "domino effect" model for reductive genome evolution. The process starts with a gradual gene-by-gene-death sequence of events. Eventually, a crucial gene within a complex pathway or network is rendered nonfunctional triggering a "mass gene extinction" of the dependent genes. In contrast to published reports according to which genes belonging to certain functional categories are prone to nonfunctionalization more frequently and earlier than genes belonging to other functional categories, we could discern no characteristic regularity in the temporal order of function loss.


Assuntos
Bactérias/genética , Evolução Molecular , Deleção de Genes , Genes Bacterianos/genética , Simbiose/genética
16.
Int J Syst Evol Microbiol ; 54(Pt 6): 1937-1941, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15545414

RESUMO

Obligatory intracellular parasites have undergone significant genome reduction by gene loss over time in the context of their obligate associations with the host. The flux, streamlining and elimination of genes in these genomes constitute a selective and ongoing process. Comparative analyses of five completely sequenced obligatory intracellular parasite genomes reveal that these genomes display marked similarities in patterns of protein length and frequency distribution, with substantial sharing of a 'backbone genome'. From category distribution based on the database of cluster of orthologous groups of proteins (COG), it is clear that habitat is a major factor contributing to genome reduction. It is also observed that, in all five obligatory intracellular parasites, the reduction in number of genes/proteins is greater for proteins with lengths of 200-600 amino acids. These comparative analyses highlight that gene loss is function-dependent, but is independent of protein length. These comparisons enhance our knowledge of the forces that drive the extreme specialization of the bacteria and their association with the host.


Assuntos
Chlamydia/genética , Cromossomos Bacterianos/genética , Evolução Molecular , Genoma Bacteriano , Mycobacterium leprae/genética , Rickettsia/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células/microbiologia , Chlamydia trachomatis/genética , Chlamydophila pneumoniae/genética , Deleção de Genes , Genômica , Humanos , Rickettsia conorii/genética , Rickettsia prowazekii/genética
17.
J Biol Chem ; 279(43): 44847-57, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15308633

RESUMO

The Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis possess several unique and structurally diverse lipids, including the genus-specific mycolic acids. Although the function of a number of genes involved in fatty acid and mycolic acid biosynthesis is known, information relevant to the initial steps within these biosynthetic pathways is relatively sparse. Interestingly, the genomes of Corynebacterianeae possess a high number of accD genes, whose gene products resemble the beta-subunit of the acetyl-CoA carboxylase of Escherichia coli, providing the activated intermediate for fatty acid synthesis. We present here our studies on four putative accD genes found in C. glutamicum. Although growth of the accD4 mutant remained unchanged, growth of the accD1 mutant was strongly impaired and partially recovered by the addition of exogenous oleic acid. Overexpression of accD1 and accBC, encoding the carboxylase alpha-subunit, resulted in an 8-fold increase in malonyl-CoA formation from acetyl-CoA in cell lysates, providing evidence that accD1 encodes a carboxyltransferase involved in the biosynthesis of malonyl-CoA. Interestingly, fatty acid profiles remained unchanged in both our accD2 and accD3 mutants, but a complete loss of mycolic acids, either as organic extractable trehalose and glucose mycolates or as cell wall-bound mycolates, was observed. These two carboxyltransferases are also retained in all Corynebacterianeae, including Mycobacterium leprae, constituting two distinct groups of orthologs. Furthermore, carboxyl fixation assays, as well as a study of a Cg-pks deletion mutant, led us to conclude that accD2 and accD3 are key to mycolic acid biosynthesis, thus providing a carboxylated intermediate during condensation of the mero-chain and alpha-branch directed by the pks-encoded polyketide synthase. This study illustrates that the high number of accD paralogs have evolved to represent specific variations on the well known basic theme of providing carboxylated intermediates in lipid biosynthesis.


Assuntos
Carbono-Carbono Ligases/química , Corynebacterium glutamicum/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Policetídeo Sintases/química , Southern Blotting , Proliferação de Células , Escherichia coli/metabolismo , Ácidos Graxos/química , Deleção de Genes , Genoma Bacteriano , Genótipo , Metabolismo dos Lipídeos , Lipídeos/química , Malonil Coenzima A/química , Modelos Biológicos , Modelos Genéticos , Mutação , Peptídeos/química , Fenótipo , Filogenia , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína , Fatores de Tempo
18.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 5): 875-7, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11976509

RESUMO

Experiences in the application of Boolean logic to the clusters of orthologous groups of proteins (COGs) database for target selection in the Mycobacterium tuberculosis genome are described.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Genes Bacterianos/genética , Genoma Bacteriano , Genômica/métodos , Mycobacterium leprae/genética , Mycobacterium tuberculosis/genética , Proteômica/métodos , Bases de Dados de Proteínas , Deleção de Genes , Genes Essenciais/genética , Fenótipo , Filogenia
19.
J Infect Dis ; 185 Suppl 1: S1-8, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11865434

RESUMO

Mycobacterium leprae infection was evaluated in interferon-gamma knockout (GKO) mice. At 4 months, growth of the bacilli in the footpads of GKO mice plateaued a log(10) higher than that in control mice. Control mice exhibited mild lymphocytic and histiocytic infiltrates, whereas GKO mice developed large, unorganized infiltrates of epithelioid macrophages and scattered CD4 and CD8 T cells. Flow cytometric analysis of popliteal lymph node cells demonstrated similar profiles of T cells; however, GKO cells exhibited an elevated proliferative response to M. leprae antigen. Expression of inducible nitric oxide synthase mRNA was decreased in GKO mice, whereas macrophage inflammatory protein-1alpha and interleukin-4 and -10 mRNA expression were augmented. Control and GKO activated macrophages inhibited bacterial metabolism and produced nitrite. Thus, although deficient in an important Th1 cytokine, GKO mice possess compensatory mechanisms to control M. leprae growth and feature elements resembling mid-borderline leprosy in humans.


Assuntos
Modelos Animais de Doenças , Interferon gama/genética , Hanseníase/imunologia , Hanseníase/fisiopatologia , Camundongos Knockout , Mycobacterium leprae/patogenicidade , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Citometria de Fluxo , Pé/microbiologia , Pé/patologia , Deleção de Genes , Humanos , Imuno-Histoquímica , Hanseníase/microbiologia , Linfonodos/imunologia , Ativação Linfocitária , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium leprae/crescimento & desenvolvimento , Mycobacterium leprae/imunologia
20.
Biochem J ; 361(Pt 3): 635-9, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11802794

RESUMO

The product of the gene ponA present in cosmid MTCY21D4, one of the collection of clones representing the genome of Mycobacterium tuberculosis, has been named penicillin-binding protein 1* (PBP1*), by analogy to the previously characterized PBP1* of M. leprae. This gene has been overexpressed in Escherichia coli. His(6)-tagged PBP1* localizes to the membranes of induced E. coli cells. Its susceptibility to degradation upon proteinase K digestion of spheroplasts from E. coli expressing the protein supports the view that the majority of the protein translocates to the periplasmic side of the membrane. Recombinant PBP1* binds benzylpenicillin and several other beta-lactams, notably cefotaxime, with high affinity. Truncation of the N-terminal 64 amino acid residues results in an expressed protein present exclusively in inclusion bodies and unable to associate with the membrane. The C-terminal module encompassing amino acids 272-663 can be extracted from inclusion bodies under denaturing conditions using guanidine/HCl and refolded to give a protein fully competent in penicillin-binding. Deletion of Gly(95)-Gln(143) results in the expression of a protein, which is localized in the cytosol. The soluble derivative of PBP1* binds benzylpenicillin with the same efficiency as the full-length protein. This is the first report of a soluble derivative of a class A high-molecular-mass PBP.


Assuntos
Proteínas de Bactérias , Proteínas de Transporte/biossíntese , Proteínas de Transporte/química , Hexosiltransferases , Muramilpentapeptídeo Carboxipeptidase/biossíntese , Muramilpentapeptídeo Carboxipeptidase/química , Mycobacterium tuberculosis/metabolismo , Peptidil Transferases , Sequência de Aminoácidos , Antibacterianos/farmacologia , Western Blotting , Proteínas de Transporte/isolamento & purificação , Membrana Celular/metabolismo , Citosol/metabolismo , Endopeptidase K/metabolismo , Escherichia coli/metabolismo , Deleção de Genes , Glutamina/química , Glicina/química , Cinética , Dados de Sequência Molecular , Muramilpentapeptídeo Carboxipeptidase/isolamento & purificação , Fases de Leitura Aberta , Proteínas de Ligação às Penicilinas , Penicilinas/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA