Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dis Model Mech ; 6(1): 19-24, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23223615

RESUMO

Leprosy (also known as Hansen's disease) is an infectious peripheral neurological disorder caused by Mycobacterium leprae that even today leaves millions of individuals worldwide with life-long disabilities. The specific mechanisms by which this bacterium induces nerve injury remain largely unknown, mainly owing to ethical and practical limitations in obtaining affected human nerve samples. In addition to humans, nine-banded armadillos (Dasypus novemcinctus) are the only other natural host of M. leprae, and they develop a systemically disseminated disease with extensive neurological involvement. M. leprae is an obligate intracellular parasite that cannot be cultivated in vitro. Because of the heavy burdens of bacilli they harbor, nine-banded armadillos have become the organism of choice for propagating large quantities of M. leprae, and they are now advancing as models of leprosy pathogenesis and nerve damage. Although armadillos are exotic laboratory animals, the recently completed whole genome sequence for this animal is enabling researchers to undertake more sophisticated molecular studies and to develop armadillo-specific reagents. These advances will facilitate the use of armadillos in piloting new therapies and diagnostic regimens, and will provide new insights into the oldest known infectious neurodegenerative disorder.


Assuntos
Tatus , Hanseníase/etiologia , Doenças Neurodegenerativas/etiologia , Criação de Animais Domésticos , Animais , Tatus/genética , Tatus/microbiologia , Modelos Animais de Doenças , Humanos , Hanseníase/diagnóstico , Hanseníase/microbiologia , Hanseníase/terapia , Mycobacterium leprae/patogenicidade , Doenças Neurodegenerativas/microbiologia , Especificidade da Espécie
2.
Prog Neurobiol ; 91(2): 102-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20005916

RESUMO

Multiple signaling pathways play key regulatory roles during the development of peripheral nervous system (PNS) and also in neuroregeneration process following nerve degeneration. Schwann cells, the glial cells of the PNS, by interacting with neuronal (axonal) ligands, mainly neuregulins via receptor tyrosine kinase (RTK) complex, ErbB2/ErbB3, initiate intracellular signaling pathways to drive proliferation and differentiation of Schwann cells, both during development and the process of regeneration and re-myelination after nerve injury. One of the major signaling kinases, extracellular signal-regulated kinase-1/2 (ERK1/2), that is also a downstream signaling pathway of neuregulin-ErbB2/ErbB3 activation, has been identified as a key regulator of Schwann cell proliferation, differentiation, demyelination and nerve regeneration. Recent studies have provided evidence that the bacterium that causes human leprosy, Mycobacterium leprae that has a unique capacity to invade Schwann cells of the adult PNS, utilizes the neuregulin-ErbB2/ErbB3 associated signaling network to the bacterial advantage. M. leprae directly bind to ErbB2 on myelinated Schwann cells and activate the RTK by a novel route that bypasses the classical neuregulin/growth factor-induced ErbB2-ErbB3 heterodimerization, and subsequently induce downstream the canonical Erk1/2 signaling, leading to myelin breakdown and subsequent axonal damage. This initial injury provides a survival advantage for M. leprae as it induces de-differentiation and generates myelin-free cells, which are highly susceptible to M. leprae invasion and promote bacterial survival. Once invaded M. leprae activate Erk1/2 via a non-canonical pathway and subsequently increase the cell proliferation and maintain the infected cells in de-differentiated state, thereby preventing remyelination. Therefore, by subverting major RTKs and signaling pathways in adult Schwann cells M. leprae appear to propagate the bacterial niche and maintain survival within the PNS. These studies may also provide new insights into our understanding of signaling mechanisms involve in both neurodegeneration and neuroregeneration.


Assuntos
Mycobacterium leprae/fisiologia , Mycobacterium leprae/patogenicidade , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/microbiologia , Nervos Periféricos/metabolismo , Nervos Periféricos/microbiologia , Regeneração , Transdução de Sinais , Adulto , Animais , Humanos , Hanseníase/metabolismo , Hanseníase/microbiologia , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA