Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 30(8): 1622-1628, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28745489

RESUMO

Thalidomide [α-(N-phthalimido)glutarimide] (1) is a sedative and antiemetic drug originally introduced into the clinic in the 1950s for the treatment of morning sickness. Although marketed as entirely safe, more than 10 000 babies were born with severe birth defects. Thalidomide was banned and subsequently approved for the treatment of multiple myeloma and complications associated with leprosy. Although known for more than 5 decades, the mechanism of teratogenicity remains to be conclusively understood. Various theories have been proposed in the literature including DNA damage and ROS and inhibition of angiogenesis and cereblon. All of the theories have their merits and limitations. Although the recently proposed cereblon theory has gained wide acceptance, it fails to explain the metabolism and low-dose requirement reported by a number of groups. Recently, we have provided convincing structural evidence in support of the presence of arene oxide and the quinone-reactive intermediates. However, the ability of these reactive intermediates to impart toxicity/teratogenicity needs investigation. Herein we report that the oxidative metabolite of thalidomide, dihydroxythalidomide, is responsible for generating ROS and causing DNA damage. We show, using cell lines, the formation of comet (DNA damage) and ROS. Using DNA-cleavage assays, we also show that catalase, radical scavengers, and desferal are capable of inhibiting DNA damage. A mechanism of teratogenicity is proposed that not only explains the DNA-damaging property but also the metabolism, low concentration, and species-specificity requirements of thalidomide.


Assuntos
Dano ao DNA/efeitos dos fármacos , Talidomida/toxicidade , Catalase/metabolismo , Clivagem do DNA , Sequestradores de Radicais Livres/química , Células HEK293 , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Microscopia de Fluorescência , Plasmídeos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Teratogênicos/química , Teratogênicos/metabolismo , Teratogênicos/toxicidade , Talidomida/química , Talidomida/metabolismo
2.
FEMS Yeast Res ; 13(2): 180-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23122272

RESUMO

We report the characterization of five strains belonging to the halotolerant highly related Debaryomyces hansenii/fabryi species. The analysis performed consisted in studying tolerance properties, membrane characteristics, and cation incell amounts. We have specifically investigated (1) tolerance to different chemicals, (2) tolerance to osmotic and salt stress, (3) tolerance and response to oxidative stress, (4) reactive oxygen species (ROS) content, (5) relative membrane potential, (6) cell volume, (7) K(+) and Na(+) ion content, and (8) membrane fluidity. Unexpectedly, no direct relationship was found between one particular strain, Na(+) content and its tolerance to NaCl or between its ROS content and its tolerance to H(2)O(2). Results show that, although in general, human origin D. fabryi strains were more resistant to oxidative stress and presented shorter doubling times and smaller cell volume than food isolated D. hansenii ones, strains belonging to the same species can be significantly different. Debaryomyces fabryi CBS1793 strain highlighted for its extremely tolerant behavior when exposed to the diverse stress factors studied.


Assuntos
Pressão Osmótica , Estresse Oxidativo , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/fisiologia , Sais/toxicidade , Estresse Fisiológico , Divisão Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Citoplasma/química , Humanos , Fluidez de Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potássio/análise , Espécies Reativas de Oxigênio/análise , Saccharomycetales/química , Saccharomycetales/crescimento & desenvolvimento , Sódio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA