Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Appl Microbiol ; 133(1): 200-211, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35050543

RESUMO

INTRODUCTION: Debaryomyces hansenii is a yeast widely used in meat fermentations as starter for the purpose of improving the aromatic quality of the final product. However, it has not been the subject of an extensive study regarding phenotypic characteristics important for starter selection, such as the capacity to grow at abiotic stress conditions occurring during fermentation, the ability to generate desirable aromas and the absence of virulence traits in yeasts. AIMS: The aim of this study was to screen 60 strains of D. hansenii isolated from assorted foods for their potential application as starters in dry-cured fermented sausages manufacture. METHODS: The abiotic stress factors tested were low aw and pH and high concentration of salt, acetic acid and lactic acid. The phenotypic virulence traits explored were growth at 37°C, pseudohyphal and biofilm generation, invasiveness and enzymatic activities present in virulent yeasts. The generation of desirable meat aromas was tested in models containing aroma precursors applying an olfactory analysis. A quantitative profiling of stress tolerance was used to test the potential performance of selected strains in meat fermentations. RESULTS: The results demonstrated that most strains displayed no virulence trait or were only positive for biofilm production. Moreover, the strains showed large heterogeneity regarding their tolerance to abiotic stress factors, although most of them could grow at intermediate to high levels of the traits. The sensory analysis was the criteria determining the selection of starter strains. CONCLUSIONS: The evaluation of the phenotypic traits demonstrates that D. hansenii is a safe yeast, it is able to tolerate the stress in meat fermentation and it is able to generate desirable aromas. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study confirm the adequacy of selected D. hansenii strains to be applied as starters in meat products.


Assuntos
Debaryomyces , Produtos da Carne , Debaryomyces/genética , Fermentação , Microbiologia de Alimentos , Odorantes/análise , Saccharomyces cerevisiae , Estresse Fisiológico , Fatores de Virulência/análise
2.
Virulence ; 10(1): 1026-1033, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31782338

RESUMO

In this study, we characterized the role of Rv2617c in the virulence of Mycobacterium tuberculosis. Rv2617c is a protein of unknown function unique to M. tuberculosis complex (MTC) and Mycobacterium leprae. In vitro, this protein interacts with the virulence factor P36 (also named Erp) and KdpF, a protein linked to nitrosative stress. Here, we showed that knockout of the Rv2617c gene in M. tuberculosis CDC1551 reduced the replication of the pathogen in a mouse model of infection and favored the trafficking of mycobacteria to phagolysosomes. We also demonstrated that Rv2617c and P36 are required for resistance to in vitro hydrogen peroxide treatment in M. tuberculosis and Mycobacterium bovis, respectively. These findings indicate Rv2617c and P36 act in concert to prevent bacterial damage upon oxidative stress.


Assuntos
Proteínas de Bactérias/genética , Mycobacterium bovis/genética , Mycobacterium bovis/patogenicidade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Estresse Oxidativo , Fatores de Virulência/genética , Animais , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Virulência
3.
Microb Cell Fact ; 18(1): 44, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30841891

RESUMO

BACKGROUND: Mycobacterium bovis Bacille Calmette-Guérin (BCG) is not only used as a vaccine against tuberculosis but also protects against leprosy and is used as part of bladder cancer treatment to induce a protective immune response. However, protection by BCG vaccination is not optimal. To improve vaccine efficacy, recombinant BCG expressing heterologous antigens has been put forward to elicit antigen-specific cellular and humoral responses. Cell surface localized or secreted antigens induce better immune responses than their cytosolic counterparts. Optimizing secretion of heterologous proteins or protein fragments holds therefore unexplored potential for improving the efficacy of recombinant BCG vaccine candidates. Secretion of heterologous antigens requires crossing the mycobacterial inner and outer membrane. Mycobacteria have specialized ESX or type VII secretion systems that enable translocation of proteins across both membranes. Probing this secretion system could therefore be a valid approach to surface localize heterologous antigens. RESULTS: We show that ESX-5 substrate LipY, a lipase, can be used as a carrier for heterologous secretion of an ovalbumin fragment (OVA). LipY contains a PE domain and a lipase domain, separated by a linker region. This linker domain is processed upon secretion. Fusion of the PE and linker domains of LipY to OVA enabled ESX-5-dependent secretion of the fusion construct LipY-OVA in M. marinum, albeit with low efficiency. Subsequent random mutagenesis of LipY-OVA and screening for increased secretion resulted in mutants with improved heterologous secretion. Detailed analysis identified two mutations in OVA that improved secretion, i.e. an L280P mutation and a protein-extending frameshift mutation. Finally, deletion of the linker domain of LipY enhanced secretion of LipY-OVA, although this mutation also reduced surface association. Further analysis in wild type LipY showed that the linker domain is required for surface association. CONCLUSION: We show that the ESX-5 system can be used for heterologous secretion. Furthermore, minor mutations in the substrate can enhance secretion. Especially the C-terminal region seems to be important for this. The linker domain of LipY is involved in surface association. These findings show that non-biased screening approaches aid in optimization of heterologous secretion, which can contribute to heterologous vaccine development.


Assuntos
Proteínas de Bactérias/genética , Hidrolases de Éster Carboxílico/genética , Proteínas de Membrana/genética , Mycobacterium marinum/genética , Ovalbumina/metabolismo , Fatores de Virulência/genética , Antígenos de Bactérias/genética , Proteínas de Transporte/genética , Mutagênese , Mutação , Ovalbumina/genética , Sistemas de Secreção Tipo VII/genética , Sistemas de Secreção Tipo VII/metabolismo
4.
Gene ; 643: 26-34, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29208413

RESUMO

Mycobacterium leprae has a reduced genome size due to the reductive evolution over a long period of time. Lipid metabolism plays an important role in the life cycle and pathogenesis of this bacterium. In comparison to 26 lip genes (Lip A-Z) of M. tuberculosis, M. leprae retained only three orthologs indicating their importance in its life cycle. ML0314c (LipU) is one of them. It is conserved throughout the mycobacterium species. Bioinformatics analysis showed the presence of an α/ß hydrolase fold and 'GXSXG' characteristic of the esterases/lipases. The gene was expressed in E. coli and purified to homogeneity. It showed preference towards short chain esters with pNP-acetate as the preferred substrate. The enzyme showed optimal activity at 45°C and pH8.0. ML0314c protein was stable between temperatures ranging from 20 to 60°C and pH5.0-8.0, i.e., relatively acidic and neutral conditions. The active site residues predicted bioinformatically were confirmed to be Ser168, Glu267, and His297 by site directed mutagenesis. E-serine, DEPC and Tetrahydrolipstatin (THL) completely inhibited the activity of ML0314c. The protein was localized in cell wall and extracellular medium. Several antigenic epitopes were predicted in ML0314c. Protein elicited strong humoral immune response in leprosy patients, whereas, a reduced immune response was observed in the relapsed cases. No humoral response was observed in treatment completed patients. Overexpression of ml0314c in the surrogate host M. smegmatis showed marked difference in the colony morphology and growth rate. In conclusion, ML0314c is a secretary carboxyl esterase that could modulate the immune response in leprosy patients.


Assuntos
Lipólise/genética , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Domínio Catalítico/genética , Clonagem Molecular/métodos , Escherichia coli/genética , Humanos , Concentração de Íons de Hidrogênio , Hanseníase/metabolismo , Hanseníase/microbiologia , Lipase/genética , Metabolismo dos Lipídeos/genética , Lipídeos , Mutagênese Sítio-Dirigida/métodos , Mycobacterium tuberculosis/genética , Especificidade por Substrato/genética , Fatores de Virulência
5.
PLoS Negl Trop Dis ; 11(8): e0005883, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28854187

RESUMO

Mycobacteriaceae comprises pathogenic species such as Mycobacterium tuberculosis, M. leprae and M. abscessus, as well as non-pathogenic species, for example, M. smegmatis and M. thermoresistibile. Genome comparison and annotation studies provide insights into genome evolutionary relatedness, identify unique and pathogenicity-related genes in each species, and explore new targets that could be used for developing new diagnostics and therapeutics. Here, we present a comparative analysis of ten-mycobacterial genomes with the objective of identifying similarities and differences between pathogenic and non-pathogenic species. We identified 1080 core orthologous clusters that were enriched in proteins involved in amino acid and purine/pyrimidine biosynthetic pathways, DNA-related processes (replication, transcription, recombination and repair), RNA-methylation and modification, and cell-wall polysaccharide biosynthetic pathways. For their pathogenicity and survival in the host cell, pathogenic species have gained specific sets of genes involved in repair and protection of their genomic DNA. M. leprae is of special interest owing to its smallest genome (1600 genes and ~1300 psuedogenes), yet poor genome annotation. More than 75% of the pseudogenes were found to have a functional ortholog in the other mycobacterial genomes and belong to protein families such as transferases, oxidoreductases and hydrolases.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano , Mycobacteriaceae/genética , Mycobacteriaceae/patogenicidade , Fatores de Virulência/genética
6.
Curr Drug Targets ; 18(16): 1904-1918, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-28699515

RESUMO

BACKGROUND: Mycobacteria genus is responsible for deadly diseases like tuberculosis and leprosy. Cell wall of bacteria belonging to this genus is unique in many ways. It plays a major role in the pathogenesis and intracellular survival inside the host. In intracellular pathogens, their cell wall acts as molecular shield and interacts with host cell milieu to modulate host defense responses. OBJECTIVES: In this review, we summarize the factors that participate in the biosynthesis of unique mycobacterial cell wall, understand their potential as drug targets and the recent developments where they have been evaluated as possible drug targets. RESULTS: Several cell wall associated factors that play crucial roles in the synthesis of cell wall components like Antigen 85 complex, Glycosyltransferases (GTs), LM (lipomannan) and LAM (lipoarabinomannan), mAGP Complex, lipolytic enzyme have been categorically documented. Most of the presently used anti TB regimens interrupted cell wall synthesis, but the emergence of drug resistant strains made it mandatory to identify new drug targets. Novel drug candidates which could inhibit the synthesis of cell wall components have been thoroughly studied worldwide. CONCLUSION: Studies demonstrated that the cell wall components are unique in terms of their contribution in mycobacterium pathogenesis. Targeting these can hamper the growth of M. tuberculosis. In this study, we scrutinize the drugs under trials and the potential candidates screened through in silico findings.


Assuntos
Antituberculosos/farmacologia , Parede Celular/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Tuberculose/tratamento farmacológico , Fatores de Virulência/metabolismo , Antituberculosos/química , Antituberculosos/uso terapêutico , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Parede Celular/metabolismo , Ensaios Clínicos como Assunto , Simulação por Computador , Desenho de Fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo
7.
BMC Microbiol ; 17(1): 113, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28506251

RESUMO

BACKGROUND: Poultry farming and consumption of poultry (Gallus gallus domesticus) meat and eggs are common gastronomical practices worldwide. Till now, a detailed understanding about the gut colonisation of Gallus gallus domesticus by yeasts and their virulence properties and drug resistance patterns in available literature remain sparse. This study was undertaken to explore this prevalent issue. RESULTS: A total of 103 specimens of fresh droppings of broiler chickens (commercial G domesticus) and domesticated chickens (domesticated G domesticus) were collected from the breeding sites. The isolates comprised of 29 (33%) Debaryozyma hansenii (Candida famata), 12 (13.6%) Sporothrix catenata (C. ciferrii), 10 (11.4%) C. albicans, 8 (9.1%) Diutnia catenulata (C. catenulate), 6 (6.8%) C. tropicalis, 3 (3.4%) Candida acidothermophilum (C. krusei), 2 (2.3%) C. pintolopesii, 1 (1.1%) C. parapsilosis, 9 (10.2%) Trichosporon spp. (T. moniliiforme, T. asahii), 4 (4.5%) Geotrichum candidum, 3 (3.4%) Cryptococcus macerans and 1 (1%) Cystobasidium minuta (Rhodotorula minuta). Virulence factors, measured among different yeast species, showed wide variability. Biofilm cells exhibited higher Minimum Inhibitory Concentration (MIC) values (µg/ml) than planktonic cells against all antifungal compounds tested: (fluconazole, 8-512 vs 0.031-16; amphotericin B, 0.5-64 vs 0.031-16; voriconazole 0.062-16 vs 0.062-8; caspofungin, 0.062-4 vs 0.031-1). CONCLUSIONS: The present work extends the current understanding of in vitro virulence factors and antifungal susceptibility pattern of gastrointestinal yeast flora of G domesticus. More studies with advanced techniques are needed to quantify the risk of spread of these potential pathogens to environment and human.


Assuntos
Antifúngicos/farmacologia , Biodiversidade , Microbioma Gastrointestinal/efeitos dos fármacos , Fatores de Virulência , Virulência , Leveduras/classificação , Leveduras/efeitos dos fármacos , Anfotericina B/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Caspofungina , Galinhas/microbiologia , Contagem de Colônia Microbiana/veterinária , Farmacorresistência Fúngica/efeitos dos fármacos , Equinocandinas/farmacologia , Fluconazol/farmacologia , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana/veterinária , Nepal , Aves Domésticas/microbiologia , Voriconazol/farmacologia , Leveduras/isolamento & purificação
8.
Future Microbiol ; 12: 315-335, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28287297

RESUMO

Mycobacterium leprae must adopt a metabolic strategy and undergo various metabolic alterations upon infection to survive inside the human body for years in a dormant state. A change in lipid homeostasis upon infection is highly pronounced in Mycobacterium leprae. Lipids play an essential role in the survival and pathogenesis of mycobacteria. Lipids are present in several forms and serve multiple roles from being a source of nutrition, providing rigidity, evading the host immune response to serving as virulence factors, etc. The synthesis and degradation of lipids is a highly regulated process and is the key to future drug designing and diagnosis for mycobacteria. In the current review, an account of the distinct roles served by lipids, the mechanism of their synthesis and degradation has been elucidated.


Assuntos
Hanseníase/microbiologia , Metabolismo dos Lipídeos , Mycobacterium leprae/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Hanseníase/metabolismo , Mycobacterium leprae/genética , Mycobacterium leprae/crescimento & desenvolvimento , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
9.
Genome ; 58(1): 25-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25985983

RESUMO

Mycobacterium leprae is an intracellular obligate parasite that causes leprosy in humans, and it leads to the destruction of peripheral nerves and skin deformation. Here, we report an extensive analysis of the hypothetical proteins (HPs) from M. leprae strain Br4923, assigning their functions to better understand the mechanism of pathogenesis and to search for potential therapeutic interventions. The genome of M. leprae encodes 1604 proteins, of which the functions of 632 are not known (HPs). In this paper, we predicted the probable functions of 312 HPs. First, we classified all HPs into families and subfamilies on the basis of sequence similarity, followed by domain assignment, which provides many clues for their possible function. However, the functions of 320 proteins were not predicted because of low sequence similarity with proteins of known function. Annotated HPs were categorized into enzymes, binding proteins, transporters, and proteins involved in cellular processes. We found several novel proteins whose functions were unknown for M. leprae. These proteins have a requisite association with bacterial virulence and pathogenicity. Finally, our sequence-based analysis will be helpful for further validation and the search for potential drug targets while developing effective drugs to cure leprosy.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium leprae/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Bases de Dados de Proteínas , Humanos , Hanseníase/microbiologia , Anotação de Sequência Molecular , Mycobacterium leprae/genética , Mycobacterium leprae/patogenicidade , Homologia de Sequência de Aminoácidos , Fatores de Virulência/genética
10.
J Microbiol Methods ; 103: 112-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24880131

RESUMO

Pathogen-specific biomarkers are secreted in the host during infection. Many important biomarkers are not proteins but rather small molecules that cannot be directly detected by conventional methods. However, these small molecule biomarkers, such as phenolic glycolipid-I (PGL-I) of Mycobacterium leprae and Mycobactin T (MbT) of Mycobacterium tuberculosis, are critical to the pathophysiology of infection, and may be important in the development of diagnostics, vaccines, and novel therapeutic strategies. Methods for the direct detection of these biomarkers may be of significance both for the diagnosis of infectious disease, and also for the laboratory study of such molecules. Herein, we present, for the first time, a transduction approach for the direct and rapid (30min) detection of small amphiphilic biomarkers in complex samples (e.g. serum) using a single affinity reagent. To our knowledge, this is the first demonstration of an assay for the direct detection of PGL-I, and the first single-reporter assay for the detection of MbT. The assay format exploits the amphiphilic chemistry of the small molecule biomarkers, and is universally applicable to all amphiphiles. The assay is only the first step towards developing a robust system for the detection of amphiphilic biomarkers that are critical to infectious disease pathophysiology.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Interações Hospedeiro-Patógeno , Tensoativos , Fatores de Virulência , Técnica Indireta de Fluorescência para Anticorpo , Ligantes
11.
Artigo em Inglês | MEDLINE | ID: mdl-24823400

RESUMO

BACKGROUND: Colonization by methicillin-resistant Staphylococcus aureus (MRSA) in atopic dermatitis is little studied but has therapeutic implications. It may have a role in disease severity given the additional virulence factors associated. AIMS: Our aims were to record the proportion of patients with MRSA colonization in atopic dermatitis and to ascertain if any association exists between MRSA colonization and disease severity. METHODS: An observational cross-sectional study involving children aged≤12 years with atopic dermatitis attending the outpatient department of Government Medical College, Kottayam was conducted. Socio-demographic data, exacerbating factors and risk factors for hospital care-associated MRSA were documented. Extent of atopic dermatitis was recorded using a standardized scale (Eczema Area Severity Index, EASI). Skin swabs were taken from anterior nares and the worst affected atopic dermatitis sites for culture and sensitivity. RESULTS: Of the 119 subjects recruited during the study period (November 2009-April 2011), Staphylococcus aureus was isolated from 110 (92.4%) patients and MRSA from 30 (25.21%) patients. A total of 18 patients with MRSA had risk factors for healthcare associated-MRSA. The patients whose cultures grew MRSA were found to have significantly higher EASI score when compared to those patients colonized with methicillin sensitive Staphylococcus aureus (P < 0.01). Presence of Staphylococcus aureus, early age of onset, presence of food allergies, seasonal exacerbation and inadequate breastfeeding did not seem to influence disease severity. CONCLUSIONS: There is a high degree of prevalence of MRSA (25.2%) in atopic dermatitis and presence of MRSA is associated with increased disease severity. Further studies are needed to validate these findings.


Assuntos
Dermatite Atópica/epidemiologia , Dermatite Atópica/patologia , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Índice de Gravidade de Doença , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/patologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Índia/epidemiologia , Lactente , Masculino , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Prevalência , Fatores de Risco , Fatores de Virulência
12.
Microbiol Spectr ; 2(1): MGM2-0025-2013, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26082120

RESUMO

Most mycobacterial species are harmless saprophytes, often found in aquatic environments. A few species seem to have evolved from this pool of environmental mycobacteria into major human pathogens, such as Mycobacterium tuberculosis, the agent of tuberculosis, Mycobacterium leprae, the leprosy bacillus, and Mycobacterium ulcerans, the agent of Buruli ulcer. While the pathogenicity of M. ulcerans relates to the acquisition of a large plasmid encoding a polyketide-derived toxin, the molecular mechanisms by which M. leprae or M. tuberculosis have evolved to cause disease are complex and involve the interaction between the pathogen and the host. Here we focus on M. tuberculosis and closely related mycobacteria and discuss insights gained from recent genomic and functional studies. Comparison of M. tuberculosis genome data with sequences from nontuberculous mycobacteria, such as Mycobacterium marinum or Mycobacterium kansasii, provides a perception of the more distant evolution of M. tuberculosis, while the recently accomplished genome sequences of multiple tubercle bacilli with smooth colony morphology, named Mycobacterium canettii, have allowed the ancestral gene pool of tubercle bacilli to be estimated. The resulting findings are instrumental for our understanding of the pathogenomic evolution of tuberculosis-causing mycobacteria. Comparison of virulent and attenuated members of the M. tuberculosis complex has further contributed to identification of a specific secretion pathway, named ESX or Type VII secretion. The molecular machines involved are key elements for mycobacterial pathogenicity, strongly influencing the ability of M. tuberculosis to cope with the immune defense mounted by the host.


Assuntos
Genoma Bacteriano , Mycobacterium/genética , Mycobacterium/patogenicidade , Tuberculose/microbiologia , Fatores de Virulência/genética , Biologia Computacional , Evolução Molecular , Humanos
13.
Infect Immun ; 81(11): 4160-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23980107

RESUMO

Expression of the lspB-lspA2 operon encoding a virulence-related two-partner secretion system in Haemophilus ducreyi 35000HP is directly regulated by the CpxRA regulatory system (M. Labandeira-Rey, J. R. Mock, and E. J. Hansen, Infect. Immun. 77:3402-3411, 2009). In the present study, we show that this secretion system is also regulated by the small nucleoid-associated protein Fis. Inactivation of the H. ducreyi fis gene resulted in a reduction in expression of both the H. ducreyi LspB and LspA2 proteins. DNA microarray experiments showed that a H. ducreyi fis deletion mutant exhibited altered expression levels of genes encoding other important H. ducreyi virulence factors, including DsrA and Flp1, suggesting a possible global role for Fis in the control of virulence in this obligate human pathogen. While the H. ducreyi Fis protein has a high degree of sequence and structural similarity to the Fis proteins of other bacteria, its temporal pattern of expression was very different from that of enterobacterial Fis proteins. The use of a lacZ-based transcriptional reporter provided evidence which indicated that the H. ducreyi Fis homolog is a positive regulator of gyrB, a gene that is negatively regulated by Fis in enteric bacteria. Taken together, the Fis protein expression data and the observed regulatory effects of Fis in H. ducreyi suggest that this small DNA binding protein has a regulatory role in H. ducreyi which may differ in substantial ways from that of other Fis proteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas de Bactérias/biossíntese , Fator Proteico para Inversão de Estimulação/metabolismo , Regulação Bacteriana da Expressão Gênica , Haemophilus ducreyi/genética , Óperon , Fusão Gênica Artificial , Fator Proteico para Inversão de Estimulação/genética , Deleção de Genes , Perfilação da Expressão Gênica , Genes Reporter , Lectinas/biossíntese , Análise em Microsséries , Transcrição Gênica , Regulação para Cima , Fatores de Virulência/metabolismo , beta-Galactosidase/análise , beta-Galactosidase/genética
14.
J Bacteriol ; 195(15): 3486-502, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23729647

RESUMO

Haemophilus ducreyi causes chancroid, a genital ulcer disease that facilitates the transmission of human immunodeficiency virus type 1. In humans, H. ducreyi is surrounded by phagocytes and must adapt to a hostile environment to survive. To sense and respond to environmental cues, bacteria frequently use two-component signal transduction (2CST) systems. The only obvious 2CST system in H. ducreyi is CpxRA; CpxR is a response regulator, and CpxA is a sensor kinase. Previous studies by Hansen and coworkers showed that CpxR directly represses the expression of dsrA, the lspB-lspA2 operon, and the flp operon, which are required for virulence in humans. They further showed that CpxA functions predominantly as a phosphatase in vitro to maintain the expression of virulence determinants. Since a cpxA mutant is avirulent while a cpxR mutant is fully virulent in humans, CpxA also likely functions predominantly as a phosphatase in vivo. To better understand the role of H. ducreyi CpxRA in controlling virulence determinants, here we defined genes potentially regulated by CpxRA by using RNA-Seq. Activation of CpxR by deletion of cpxA repressed nearly 70% of its targets, including seven established virulence determinants. Inactivation of CpxR by deletion of cpxR differentially regulated few genes and increased the expression of one virulence determinant. We identified a CpxR binding motif that was enriched in downregulated but not upregulated targets. These data reinforce the hypothesis that CpxA phosphatase activity plays a critical role in controlling H. ducreyi virulence in vivo. Characterization of the downregulated genes may offer new insights into pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Haemophilus ducreyi/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Virulência/biossíntese , Proteínas de Bactérias/genética , Deleção de Genes , Perfilação da Expressão Gênica , Fosfoproteínas Fosfatases/genética , Proteínas Quinases/genética , Regulon , Proteínas Repressoras/genética , Ativação Transcricional
15.
PLoS One ; 7(7): e41923, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22860031

RESUMO

Tracing the evolution of ancient diseases depends on the availability and accessibility of suitable biomarkers in archaeological specimens. DNA is potentially information-rich but it depends on a favourable environment for preservation. In the case of the major mycobacterial pathogens, Mycobacterium tuberculosis and Mycobacterium leprae, robust lipid biomarkers are established as alternatives or complements to DNA analyses. A DNA report, a decade ago, suggested that a 17,000-year-old skeleton of extinct Bison antiquus, from Natural Trap Cave, Wyoming, was the oldest known case of tuberculosis. In the current study, key mycobacterial lipid virulence factor biomarkers were detected in the same two samples from this bison. Fluorescence high-performance liquid chromatography (HPLC) indicated the presence of mycolic acids of the mycobacterial type, but they were degraded and could not be precisely correlated with tuberculosis. However, pristine profiles of C(29), C(30) and C(32) mycocerosates and C(27) mycolipenates, typical of the Mycobacterium tuberculosis complex, were recorded by negative ion chemical ionization gas chromatography mass spectrometry of pentafluorobenzyl ester derivatives. These findings were supported by the detection of C(34) and C(36) phthiocerols, which are usually esterified to the mycocerosates. The existence of Pleistocene tuberculosis in the Americas is confirmed and there are many even older animal bones with well-characterised tuberculous lesions similar to those on the analysed sample. In the absence of any evidence of tuberculosis in human skeletons older than 9,000 years BP, the hypothesis that this disease evolved as a zoonosis, before transfer to humans, is given detailed consideration and discussion.


Assuntos
Mycobacterium tuberculosis/química , Ácidos Micólicos/análise , Tuberculose/veterinária , Fatores de Virulência/análise , Animais , Biomarcadores/análise , Bison , Osso e Ossos/química , Osso e Ossos/microbiologia , Cromatografia Líquida de Alta Pressão , Extinção Biológica , Humanos , Lipídeos/análise , Lipídeos/isolamento & purificação , Ácidos Micólicos/isolamento & purificação , Tuberculose/microbiologia , Fatores de Virulência/isolamento & purificação
16.
Cell Microbiol ; 14(8): 1287-98, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22524898

RESUMO

Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence.


Assuntos
Citoplasma/microbiologia , Mycobacterium/patogenicidade , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Linhagem Celular , Técnicas de Introdução de Genes , Interações Hospedeiro-Patógeno , Humanos , Lisossomos/microbiologia , Lisossomos/ultraestrutura , Mycobacterium/genética , Mycobacterium/metabolismo , Fagossomos/microbiologia , Fagossomos/ultraestrutura , Estrutura Terciária de Proteína , Ubiquitina/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
17.
Infect Immun ; 78(11): 4779-91, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20805330

RESUMO

The Haemophilus ducreyi 35000HP genome encodes a homolog of the CpxRA two-component cell envelope stress response system originally characterized in Escherichia coli. CpxR, the cytoplasmic response regulator, was shown previously to be involved in repression of the expression of the lspB-lspA2 operon (M. Labandeira-Rey, J. R. Mock, and E. J. Hansen, Infect. Immun. 77:3402-3411, 2009). In the present study, the H. ducreyi CpxR and CpxA proteins were shown to closely resemble those of other well-studied bacterial species. A cpxA deletion mutant and a CpxR-overexpressing strain were used to explore the extent of the CpxRA regulon. DNA microarray and real-time reverse transcriptase (RT) PCR analyses indicated several potential regulatory targets for the H. ducreyi CpxRA two-component regulatory system. Electrophoretic mobility shift assays (EMSAs) were used to prove that H. ducreyi CpxR interacted with the promoter regions of genes encoding both known and putative virulence factors of H. ducreyi, including the lspB-lspA2 operon, the flp operon, and dsrA. Interestingly, the use of EMSAs also indicated that H. ducreyi CpxR did not bind to the promoter regions of several genes predicted to encode factors involved in the cell envelope stress response. Taken together, these data suggest that the CpxRA system in H. ducreyi, in contrast to that in E. coli, may be involved primarily in controlling expression of genes not involved in the cell envelope stress response.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Haemophilus ducreyi/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ensaio de Desvio de Mobilidade Eletroforética , Haemophilus ducreyi/genética , Haemophilus ducreyi/patogenicidade , Humanos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Proteínas Quinases/química , Proteínas Quinases/genética , Regulon , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
18.
Transbound Emerg Dis ; 56(6-7): 255-68, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19486312

RESUMO

Mycobacteria are characterized by a complex cell wall, the lipid nature of which confers to the bacilli resistance to drying, acid or alkaline conditions, and to chemical disinfectants and therapeutic agents. Pathogenic species, such as Mycobacterium tuberculosis, M. leprae and M. ulcerans, have evolved various strategies to establish residence in their hosts and provoke long-term infections. There is mounting evidence that the unique lipids composing their envelopes, strategically located at the host-pathogen interface, contribute to their escape from immune surveillance. Here, the chemical structure, host cell receptors and biological actions of this emerging class of mycobacterial virulence factors are reviewed.


Assuntos
Lipídeos/imunologia , Infecções por Mycobacterium/imunologia , Mycobacterium/imunologia , Mycobacterium/patogenicidade , Fatores de Virulência/imunologia , Apresentação de Antígeno/imunologia , Antígenos de Bactérias/imunologia , Glicolipídeos/imunologia , Humanos , Tolerância Imunológica , Imunidade Celular , Lipídeos/biossíntese , Lipídeos/química , Lipopolissacarídeos/imunologia , Mycobacterium/ultraestrutura , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/fisiopatologia , Fagossomos/imunologia , Transdução de Sinais/imunologia , Virulência , Fatores de Virulência/biossíntese , Fatores de Virulência/química
19.
Infectio ; 12(2): 357-377, jun. 2008. ilus, tab
Artigo em Espanhol | LILACS, COLNAL | ID: lil-635638

RESUMO

La melanina es uno de los pigmentos más comunes y de mayor distribución en la naturaleza. Es responsable de la coloración de plantas y animales; se encuentra en los ojos, el cabello, la piel, el plumaje, la cáscara de los huevos, la cutícula de los insectos, la tinta de los cefalópodos y en la pared y el citoplasma de muchos microorganismos. En los humanos este pigmento se ha encontrado también fuera de la piel, en las neuronas de la sustancia nigra y en los hepatocitos. Entre los microorganismos que se han reportado como productores de melanina tenemos Vibrio cholerae, Mycobacterium leprae, Bacillus thurigiensis, Pseudomonas aeruginosa, Schistosoma mansoni, Fasciola gigantita Trichuris suis, Alternaria alternata, Aspergillus niger, Blastomyces dermatitidis, Candida albicans, Cladosporium carionii, Coccidioides immitis, Cryptococcus neoformans, Exophiala (Wangiella) dermatitidis, Fonsecaea pedrosoi, Histoplasma capsulatum, Paracoccidioides brasiliensis, Penicillium marneffei, Pneumocystis carinii (jirovecii), Scedosporium prolificans, Scytalidium dimidiatum y Sporothrix schenckii; esto sin tener en cuenta los hongos dematiáceos, entre muchos otros. Esta revisión pretende hacer un compendio de las más recientes publicaciones sobre melanina relacionadas principalmente con su función, su importante contribución a la supervivencia en el ambiente y durante la infección, como factor de virulencia en diversos microorganismos, principalmente en hongos patógenos, y su papel como agente inmunomodulador, así como la reducida susceptibilidad que confiere contra muchos de los antimicóticos usados en la actualidad.


Melanin is one of the common pigments in nature; it is responsible for pigmentation in plants and animals. It is found in skin, eyes, feathers, egg shell, hair, insect cuticle, cuttlefish ink and wall and/or cytoplasm from many microorganisms. Melanin in humans is also present in substantia nigra and hepatocytes. Some microorganisms that have been reported producing melanin are: Vibrio cholerae, Mycobacterium leprae, Bacillus thurigiensis, Pseudomonas aeruginosa, Schistosoma mansoni, Fasciola gigantita, Trichuris suis, Alternaria alternata, Aspergillus niger, Blastomyces dermatitidis, Candida albicans, Cladosporium carionii, Coccidioides immitis, Cryptococcus neoformans, Exophiala (Wangiella) dermatitidis, Fonsecaea pedrosoi, Histoplasma capsulatum, Paracoccidioides brasiliensis, Penicillium marneffei, Pneumocystis carinii (jirovecii), Scedosporium prolificans, Scytalidium dimidiatum, Sporothrix schenckii, and most of the dematiaceous fungi. This review is focused on recent international publications concerning melanin analysing its capacity to survive in nature and during infection inside the host and its evasion of the immune response. Melanin acts as an inmunomodulador particle and it is known that its presence in many of microorganisms could protect them from microbicidal agents presently used.


Assuntos
Humanos , Apoptose , Fatores de Virulência , Melaninas , Anticorpos , Fagocitose , Estresse Oxidativo , Citosina , Imunidade , Anti-Infecciosos
20.
J Biol Chem ; 283(22): 15177-84, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18390543

RESUMO

Phenolic glycolipids (PGL) play a major role in the virulence of mycobacteria, notably in strains of the Mycobacterium tuberculosis complex and in Mycobacterium leprae. The structure of the carbohydrate domain of these compounds is highly variable, and the genetic bases for these variations remain unknown. We demonstrated that the monoglycosylated PGL formed by Mycobacterium bovis differs from the triglycosylated PGL synthesized by M. tuberculosis (PGL-tb) because of the following two genetic defects: a frameshift mutation within the gene Rv2958c, encoding a glycosyltransferase involved in the transfer of the second rhamnosyl residue of the PGL-tb, and a deletion of a region that encompasses two genes, which encode a GDP-D-mannose 4,6-dehydratase and a GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase/reductase, required for the formation of activated L-fucose. Expression of these three genes in M. bovis BCG allowed synthesis of PGL-tb in this recombinant strain. Additionally, we showed that all M. bovis, Mycobacterium microti, Mycobacterium pinnipedii, and some Mycobacterium africanum strains harbor the same frameshift mutation in their Rv2958c orthologs. Consistently, the structure of PGLs purified from M. africanum (harboring the Rv2958c mutation) and M. pinnipedii strains revealed that these compounds are monoglycosylated PGL. These findings explain the specificity of PGL-tb production by some strains of the M. tuberculosis complex and have important implications for our understanding of the evolution of this complex.


Assuntos
Antígenos de Bactérias/metabolismo , Evolução Molecular , Glicolipídeos/metabolismo , Mycobacterium tuberculosis/metabolismo , Fatores de Virulência/metabolismo , Antígenos de Bactérias/genética , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Mutação da Fase de Leitura , Fucose/genética , Fucose/metabolismo , Glicolipídeos/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Hidroliases/genética , Hidroliases/metabolismo , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Mycobacterium bovis/patogenicidade , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Mycobacterium leprae/patogenicidade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Especificidade da Espécie , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA