Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS One ; 15(5): e0233285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32453779

RESUMO

Fermentation by microorganisms is a key step in the production of traditional food products such as bread, cheese, beer and wine. In these fermentative ecosystems, microorganisms interact in various ways, namely competition, predation, commensalism and mutualism. Traditional wine fermentation is a complex microbial process performed by Saccharomyces and non-Saccharomyces (NS) yeast species. To better understand the different interactions occurring within wine fermentation, isolated yeast cultures were compared with mixed co-cultures of one reference strain of S. cerevisiae with one strain of four NS yeast species (Metschnikowia pulcherrima, M. fructicola, Hanseniaspora opuntiae and H. uvarum). In each case, we studied population dynamics, resource consumed and metabolites produced from central carbon metabolism. This phenotyping of competition kinetics allowed us to confirm the main mechanisms of interaction between strains of four NS species. S. cerevisiae competed with H. uvarum and H. opuntiae for resources although both Hanseniaspora species were characterized by a strong mortality either in mono or mixed fermentations. M. pulcherrima and M. fructicola displayed a negative interaction with the S. cerevisiae strain tested, with a decrease in viability in co-culture. Overall, this work highlights the importance of measuring specific cell populations in mixed cultures and their metabolite kinetics to understand yeast-yeast interactions. These results are a first step towards ecological engineering and the rational design of optimal multi-species starter consortia using modeling tools. In particular the originality of this paper is for the first times to highlight the joint-effect of different species population dynamics on glycerol production and also to discuss on the putative role of lipid uptake on the limitation of some non-conventional species growth although interaction processes.


Assuntos
Fermentação , Hanseniaspora/metabolismo , Metschnikowia/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Dióxido de Carbono/metabolismo , Fermentação/fisiologia , Frutose/metabolismo , Sucos de Frutas e Vegetais/microbiologia , Glucose/metabolismo , Cinética , Nitrogênio/metabolismo , Vitis
2.
J Appl Microbiol ; 124(6): 1521-1531, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29457321

RESUMO

AIMS: Twenty-five enological yeasts belonging to nine different species (Candida zeylanoides, Cryptococcus uzbekistanensis, Debaryomyces hansenii, Lachancea thermotolerans, Metschnikowia pulcherrima, Torulaspora delbrueckii, Williopsis pratensis, Zygosaccharomyces bailii and Saccharomyces cerevisiae) were screened for aroma formation and fermentative behaviour as part of a non-Saccharomyces yeast selection programme. METHODS AND RESULTS: Pure cultures were inoculated in pasteurized grape juice in order to perform alcoholic fermentations. Some non-Saccharomyces species did not ferment, others did not get established and none of them completed alcoholic fermentations. The physico-chemical parameters of the wines and the abundance of aromatic compounds at the end of alcoholic fermentation highlighted the notable differences in the aroma-forming ability and fermentative behaviour of the different non-Saccharomyces species, but not within clones. CONCLUSIONS: Lower diversity was detected within non-Saccharomyces species than that reported in S. cerevisiae with regard to enological behaviour and aromatic profiles. Metschnikowia pulcherrima and L. thermotolerans are the two species with higher possibilities to become an inoculum. SIGNIFICANCE AND IMPACT OF THE STUDY: Few significant differences were found within clones of the same species, but very important parameters in wine quality, such as volatile acidity, ethyl acetate and acetoin, which would justify selection programmes within those species. The results also demonstrated that T. delbrueckii and L. thermotolerans are two close species in their aromatic profiles.


Assuntos
Fermentação/fisiologia , Odorantes/análise , Vinho , Leveduras/metabolismo , Vinho/análise , Vinho/microbiologia
3.
FEMS Microbiol Ecol ; 93(5)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430940

RESUMO

Kombucha, historically an Asian tea-based fermented drink, has recently become trendy in Western countries. Producers claim it bears health-enhancing properties that may come from the tea or metabolites produced by its microbiome. Despite its long history of production, microbial richness and dynamics have not been fully unraveled, especially at an industrial scale. Moreover, the impact of tea type (green or black) on microbial ecology was not studied. Here, we compared microbial communities from industrial-scale black and green tea fermentations, still traditionally carried out by a microbial biofilm, using culture-dependent and metabarcoding approaches. Dominant bacterial species belonged to Acetobacteraceae and to a lesser extent Lactobacteriaceae, while the main identified yeasts corresponded to Dekkera, Hanseniaspora and Zygosaccharomyces during all fermentations. Species richness decreased over the 8-day fermentation. Among acetic acid bacteria, Gluconacetobacter europaeus, Gluconobacter oxydans, G. saccharivorans and Acetobacter peroxydans emerged as dominant species. The main lactic acid bacteria, Oenococcus oeni, was strongly associated with green tea fermentations. Tea type did not influence yeast community, with Dekkera bruxellensis, D. anomala, Zygosaccharomyces bailii and Hanseniaspora valbyensis as most dominant. This study unraveled a distinctive core microbial community which is essential for fermentation control and could lead to Kombucha quality standardization.


Assuntos
Fermentação/fisiologia , Chá de Kombucha/microbiologia , Microbiota/genética , Ácido Acético/metabolismo , Acetobacter/classificação , Acetobacter/genética , Acetobacter/isolamento & purificação , Técnicas de Tipagem Bacteriana , Biofilmes/crescimento & desenvolvimento , Dekkera/classificação , Dekkera/genética , Dekkera/isolamento & purificação , Hanseniaspora/classificação , Hanseniaspora/genética , Hanseniaspora/isolamento & purificação , Ácido Láctico/metabolismo , Técnicas de Tipagem Micológica , Oenococcus/classificação , Oenococcus/genética , Oenococcus/isolamento & purificação , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Zygosaccharomyces/classificação , Zygosaccharomyces/genética , Zygosaccharomyces/isolamento & purificação
4.
Int J Food Microbiol ; 214: 137-144, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26292165

RESUMO

The yeast diversity on wine grapes in Germany, one of the most northern wine growing regions of the world, was investigated by means of a culture dependent approach. All yeast isolates were identified by sequence analysis of the D1/D2 domain of the 26S rDNA and the ITS region. Besides Hanseniaspora uvarum and Metschnikowia pulcherrima, which are well known to be abundant on grapes, Metschnikowia viticola, Rhodosporidium babjevae, and Curvibasidium pallidicorallinum, as well as two potentially new species related to Sporidiobolus pararoseus and Filobasidium floriforme, turned out to be typical members of the grape yeast community. We found M. viticola in about half of the grape samples in high abundance. Our data strongly suggest that M. viticola is one of the most important fermenting yeast species on grapes in the temperate climate of Germany. The frequent occurrence of Cu. pallidicorallinum and strains related to F. floriforme is a new finding. The current investigation provides information on the distribution of recently described yeast species, some of which are known from a very few strains up to now. Interestingly yeasts known for their role in the wine making process, such as Saccharomyces cerevisiae, Saccharomyces bayanus ssp. uvarum, Torulaspora delbrueckii, and Zygosaccharomyces bailii, were not found in the grape samples.


Assuntos
Fermentação/fisiologia , Hanseniaspora/isolamento & purificação , Metschnikowia/isolamento & purificação , Vitis/microbiologia , Vinho/microbiologia , DNA Espaçador Ribossômico/genética , Alemanha , Hanseniaspora/genética , Metschnikowia/genética , RNA Ribossômico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Zygosaccharomyces/genética , Zygosaccharomyces/isolamento & purificação
5.
J Dairy Sci ; 93(8): 3764-74, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20655446

RESUMO

The present study aimed to investigate the effects of 2 corn silage inoculation strategies (homofermentative vs. heterofermentative inoculation) under field conditions and to monitor responses in silage variables over the feeding season from January to August. Thirty-nine commercial dairy farms participated in the study. Farms were randomly assigned to 1 of 3 treatments: control (nonactive carrier; Chr. Hansen A/S, Hørsholm, Denmark), Lactisil (inoculation with 1 x 10(5)Lactobacillus pentosus and 2.5 x 10(4)Pediococcus pentosaceus per gram of fresh matter; Chr. Hansen A/S), and Lalsil Fresh (inoculation with 3 x 10(5)Lactobacillus buchneri NCIMB 40788 per gram of fresh matter; Lallemand Animal Nutrition, Blagnac, France). Inoculation with Lactisil had no effects on fermentation variables and aerobic stability. On the contrary, inoculation with Lalsil Fresh doubled the aerobic stability: 37, 38, and 80+/-8h for control, Lactisil, and Lalsil Fresh, respectively. The effect of Lalsil Fresh on aerobic stability tended to differ between sampling times, indicating a reduced difference between treatments in samples collected in April. Lalsil Fresh inoculation increased silage pH and contents of acetic acid, propionic acid, propanol, propyl acetate, 2-butanol, propylene glycol, ammonia, and free AA. The contents and ratios of DL-lactic acid, L-lactic acid relative to DL-lactic acid, free glucose, and DL-lactic acid relative to acetic acid decreased with Lalsil Fresh inoculation. Lalsil Fresh inoculation increased the silage counts of total lactic acid bacteria and reduced yeast counts. The Fusarium toxins deoxynivalenol, nivalenol, and zearalenone were detected in all silages at all collections, but the contents were not affected by ensiling time or by inoculation treatment. The effect of inoculation treatments on milk production was assessed by collecting test-day results from the involved farms and comparing the actual milk production with predicted milk production within farm based on test-day results from 2007 and 2008. The average milk production of lactating cows at test days during the study (January to September 2009) was 30.7+/-0.5 kg of energy-corrected milk/d. Milk production was 104.6+/-0.7% of the predicted yield and did not differ among treatments. In conclusion, the present study showed that homofermentative inoculants might not compete efficiently or might not deviate sufficiently from the epiphytic flora on whole-crop corn to affect fermentation in standard qualities of corn silage. Heterofermentative inoculation increased aerobic stability and numerous fermentation variables. None of the treatments affected milk production, and more-stable corn silage seemed to have a similar production value as compared with less-stable homofermented silage. Heterofermented silage can be evaluated for its properties to limit aerobic silage deterioration in the feed chain.


Assuntos
Bovinos/fisiologia , Fermentação/fisiologia , Microbiologia de Alimentos , Lactação/fisiologia , Silagem/microbiologia , Zea mays/microbiologia , Aerobiose , Animais , Feminino , Lactobacillus/classificação , Lactobacillus/metabolismo , Lactobacillus/fisiologia , Pediococcus/metabolismo , Pediococcus/fisiologia , Zea mays/metabolismo
6.
J Ind Microbiol Biotechnol ; 33(3): 192-6, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16292558

RESUMO

The effect of pure and mixed fermentation by Saccharomyces cerevisiae and Hanseniaspora valbyensis on the formation of major volatile components in cider was investigated. When the interaction between yeast strains of S. cerevisiae and H. valbyensis was studied, it was found that the two strains each affected the cell growth of the other upon inoculation of S. cerevisiae during growth of H. valbyensis. The effects of pure and mixed cultures of S. cerevisiae and H. valbyensis on alcohol fermentation and major volatile compound formation in cider were assessed. S. cerevisiae showed a conversion of sugar to alcohol of 11.5%, while H. valbyensis produced alcohol with a conversion not exceeding 6%. Higher concentrations of ethyl acetate and phenethyl acetate were obtained with H. valbyensis, and higher concentrations of isoamyl alcohol and isobutyl were formed by S. cerevisiae. Consequently, a combination of these two yeast species in sequential fermentation was used to increase the concentration of ethyl esters by 7.41-20.96%, and to decrease the alcohol concentration by 25.06-51.38%. Efficient control of the formation of volatile compounds was achieved by adjusting the inoculation time of the two yeasts.


Assuntos
Bebidas Alcoólicas/microbiologia , Metabolismo dos Carboidratos/fisiologia , Microbiologia de Alimentos , Saccharomycetales/metabolismo , Acetatos/metabolismo , Butanóis/metabolismo , Etanol/metabolismo , Fermentação/fisiologia , Pentanóis/metabolismo , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo
7.
J Appl Microbiol ; 97(3): 647-55, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15281947

RESUMO

AIMS: To study the role of the indigenous yeast flora in traditional Irish cider fermentations. METHODS AND RESULTS: Wallerstein laboratory nutrient agar supplemented with biotin, ferric ammonium citrate, calcium carbonate and ethanol was employed together with PCR-restriction fragment length polymorphism analysis of the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene in the identification of indigenous yeasts at the species level, from traditional Irish cider fermentations. By combining the molecular approach and the presumptive media it was possible to distinguish between a large number of yeast species, and to track them within cider fermentations. The Irish cider fermentation process can be divided into three sequential phases based on the predominant yeast type present. Kloeckera/Hanseniaspora uvarum type yeasts predominate in the initial 'fruit yeast phase'. Thereafter Saccharomyces cerevisiae type yeast dominate in the 'fermentation phase', where the alcoholic fermentation takes place. Finally the 'maturation phase' which follows, is dominated by Dekkera and Brettanomyces type yeasts. H. uvarum type yeast were found to have originated from the fruit. Brettanomyces type yeast could be traced back to the press house, and also to the fruit. The press house was identified as having high levels of S. cerevisiae type yeast. A strong link was noted between the temperature profile of the cider fermentations, which ranged from 22 to 35 degrees C and the yeast strain population dynamics. CONCLUSIONS: Many different indigenous yeast species were identified. The mycology of Irish cider fermentations appears to be very similar to that which has previously been reported in the wine industry. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has allowed us to gain a better understanding of the role of indigenous yeast species in 'Natural' Irish cider fermentations.


Assuntos
Bebidas Alcoólicas/microbiologia , Microbiologia de Alimentos , Leveduras/fisiologia , Contagem de Colônia Microbiana/métodos , Meios de Cultura , DNA Fúngico/genética , Fermentação/fisiologia , Indústria Alimentícia/métodos , Irlanda , Malus/microbiologia , Polimorfismo de Fragmento de Restrição , Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/fisiologia , Temperatura , Fatores de Tempo , Leveduras/isolamento & purificação
8.
Biotechnol Bioeng ; 86(2): 201-8, 2004 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-15052640

RESUMO

Rifamycin B is an important polyketide antibiotic used in the treatment of tuberculosis and leprosy. We present results on medium optimization for Rifamycin B production via a barbital insensitive mutant strain of Amycolatopsis mediterranei S699. Machine-learning approaches such as Genetic algorithm (GA), Neighborhood analysis (NA) and Decision Tree technique (DT) were explored for optimizing the medium composition. Genetic algorithm was applied as a global search algorithm while NA was used for a guided local search and to develop medium predictors. The fermentation medium for Rifamycin B consisted of nine components. A large number of distinct medium compositions are possible by variation of concentration of each component. This presents a large combinatorial search space. Optimization was achieved within five generations via GA as well as NA. These five generations consisted of 178 shake-flask experiments, which is a small fraction of the search space. We detected multiple optima in the form of 11 distinct medium combinations. These medium combinations provided over 600% improvement in Rifamycin B productivity. Genetic algorithm performed better in optimizing fermentation medium as compared to NA. The Decision Tree technique revealed the media-media interactions qualitatively in the form of sets of rules for medium composition that give high as well as low productivity.


Assuntos
Actinomycetales/metabolismo , Algoritmos , Inteligência Artificial , Reatores Biológicos/microbiologia , Técnicas de Cultura de Células/métodos , Modelos Biológicos , Rifamicinas/biossíntese , Meios de Cultura/química , Meios de Cultura/metabolismo , Técnicas de Apoio para a Decisão , Fermentação/fisiologia
9.
Syst Appl Microbiol ; 26(1): 30-7, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12747407

RESUMO

Two staphylococcal strains, RP29T and RP33, were isolated from the main microflora of a surface ripened Swiss mountain cheese made from raw milk. These two strains were differentiated from the most closely related species Staphylococcus equorum on the basis of DNA-DNA hybridisation and phenotypic characteristics and are proposed as Staphylococcus equorum subsp. linens subsp. nov. They could be distinguished phenotypically from S. equorum by their sensitivity to all 14 tested antibiotics, especially to novobiocin, their incapability to ferment alpha-D-lactose, maltose, sucrose, D-trehalose, D-xylose, L-arabinose, salicin, D-ribose, D-raffinose, D-mannitol, and D-alanine. The GenBank accession numbers for the reference sequences of the 16S rDNA and the hsp60 gene used in this study are AF527483 and AF527484, respectively. 30 tons of a semi-hard Swiss cheese were produced with Staphylococcus equorum subsp. linens DSM 15097T as starter culture component in addition to Debaryomyces hansenii, Geotrichum candidum, Brevibacterium linens, Corynebacterium casei for surface ripened cheeses. The products were sensorically and hygienically perfect. Therefore, Staphylococcus equorum subsp. linens DSM 15097T can be proposed as starter culture component for surface ripened cheeses without any detected antibiotic resistances. The type strain of Staphylococcus equorum subsp. linens is DSM 15097T (CIP 107656T).


Assuntos
Queijo/microbiologia , Microbiologia de Alimentos , Indústria de Processamento de Alimentos , Staphylococcus , Sequência de Aminoácidos , Composição de Bases , Fenômenos Bioquímicos , Meios de Cultura , Fermentação/fisiologia , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Peptidoglicano/análise , Filogenia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/análise , Alinhamento de Sequência , Análise de Sequência de DNA , Staphylococcus/classificação , Staphylococcus/genética , Staphylococcus/isolamento & purificação , Staphylococcus/ultraestrutura
10.
Appl Biochem Biotechnol ; 101(1): 15-29, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12008864

RESUMO

Xylitol production by Debaryomyces hansenii NRRL Y-7426 was performed on synthetic medium varying the initial xylose concentration between 50 and 300 g/L. The experimental results of these tests were used to investigate the effect of substrate level on xylose consumption by this yeast. Satisfactory values of product yield on substrate (0.74-0.83 g/g) as well as volumetric productivity (0.481-0.694 g/L x h) were obtained over a wide range of xylose levels (90-200 g/L), while a worsening of kinetic parameters took place at higher concentration, likely due to a substrate inhibition phenomenon. The metabolic behavior of D. hansenii was studied, under these conditions, through a carbon material balance to estimate the fractions of xylose consumed by the cell for different activities (xylitol production, biomass growth, and respiration) during the lag, exponential, and stationary phases.


Assuntos
Saccharomycetales/metabolismo , Xilitol/biossíntese , Xilose/metabolismo , Biomassa , Carbono/análise , Carbono/metabolismo , Dióxido de Carbono/análise , Cromatografia Líquida de Alta Pressão , Transporte de Elétrons/fisiologia , Fermentação/fisiologia , Cinética , Saccharomycetales/crescimento & desenvolvimento , Especificidade por Substrato , Xilose/farmacologia
11.
Int J Syst Evol Microbiol ; 50 Pt 6: 2013-2020, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11155975

RESUMO

Acetic acid bacteria have been isolated from submerged high-acid spirit vinegar fermentations in the Southern part of Germany. Four strains (LTH 4560T, LTH 4341, LTH 4551 and LTH 4637) were characterized in more detail and it was revealed that they have in common certain properties such as requirement of acetic acid, ethanol and glucose for growth, and no over-oxidation of acetate. Growth occurs only at total concentrations (sum of acetic acid and ethanol) exceeding 6.0%. A method for their preservation was developed. Comparative analysis of the 16S rRNA revealed sequence similarities of >99% between strain LTH 4560T and the type strains of the related species Gluconacetobacter hansenii. However, low levels of DNA relatedness (<41 %) were determined in DNA-DNA similarity studies. In addition, specific physiological characteristics permitted a clear identification of the strains within established species of acetic acid bacteria. The strains could also be differentiated on the basis of the distribution of IS element 1031 C within the chromosome. Based on these results, the new species Gluconacetobacter entanii sp. nov. is proposed for strain LTH 4560T ( = DSM 13536T). A 16S-rRNA-targeted oligonucleotide probe was constructed that was specific for G. entanii, and the phylogenetic position of the new species was derived from a 16S-rRNA-based tree.


Assuntos
Ácido Acético/metabolismo , Acetobacter/classificação , Acetobacter/genética , Acetobacter/isolamento & purificação , Acetobacter/fisiologia , Técnicas de Tipagem Bacteriana , DNA Ribossômico/análise , Fermentação/fisiologia , Genótipo , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA