Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 57(Pt 2): 353-357, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17267978

RESUMO

A few members of the family Acetobacteraceae are cellulose-producers, while only six members fix nitrogen. Bacterial strain RG3T, isolated from Kombucha tea, displays both of these characteristics. A high bootstrap value in the 16S rRNA gene sequence-based phylogenetic analysis supported the position of this strain within the genus Gluconacetobacter, with Gluconacetobacter hansenii LMG 1527T as its nearest neighbour (99.1 % sequence similarity). It could utilize ethanol, fructose, arabinose, glycerol, sorbitol and mannitol, but not galactose or xylose, as sole sources of carbon. Single amino acids such as L-alanine, L-cysteine and L-threonine served as carbon and nitrogen sources for growth of strain RG3T. Strain RG3T produced cellulose in both nitrogen-free broth and enriched medium. The ubiquinone present was Q-10 and the DNA base composition was 55.8 mol% G+C. It exhibited low values of 5.2-27.77 % DNA-DNA relatedness to the type strains of related gluconacetobacters, which placed it within a separate taxon, for which the name Gluconacetobacter kombuchae sp. nov. is proposed, with the type strain RG3T (=LMG 23726T=MTCC 6913T).


Assuntos
Gluconacetobacter/classificação , Gluconacetobacter/isolamento & purificação , Chá/microbiologia , Aminoácidos/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , Metabolismo dos Carboidratos , Celulose/biossíntese , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Microbiologia de Alimentos , Genes de RNAr , Gluconacetobacter/genética , Gluconacetobacter/fisiologia , Dados de Sequência Molecular , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , Filogenia , Quinonas/análise , Quinonas/química , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
2.
J Biol Chem ; 265(26): 15909-19, 1990 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-2203791

RESUMO

A binary plasmid system was used to produce nitrogenase components in Escherichia coli and subsequently to define a minimum set of nitrogen fixation (nif) genes required for the production of the iron-molybdenum cofactor (FeMoco) reactivatable apomolybdenum-iron (apoMoFe) protein of nitrogenase. The active MoFe protein is an alpha 2 beta 2 tetramer containing two FeMoco clusters and 4 Fe4S4 P centers (for review see, Orme-Johnson, W.H. (1985) Annu. Rev. Biophys. Biophys. Chem. 14, 419-459). The plasmid pVL15, carrying a tac-promoted nifA activator gene, was coharbored in E. coli with the plasmid pGH1 which contained nifHDKTYENXUSVWZMF' derived from the chromosome of the nitrogen fixing bacterium Klebsiella pneumoniae. The apoMoFe protein produced in E. coli by pGH1 + VL15 was identical to the apoprotein in derepressed cells of the nifB- mutant of K. pneumoniae (UN106) in its electrophoretic properties on nondenaturing polyacrylamide gels as well as in its ability to be activated by FeMoco. The constituent peptides migrated identically to those from purified MoFe protein during electrophoresis on denaturing gels. The concentrations of apoMoFe protein produced in nif-transformed strains of E. coli were greater than 50% of the levels of MoFe protein observed in derepressed wild-type K. pneumoniae. Systematic deletion of individual nif genes carried by pGH1 has established the requirements for the maximal production of the FeMoco-reactivatable apoMoFe protein to be the following gene products, NifHDKTYUSWZM+A. It appears that several of the genes (nifT, Y, U, W, and Z) are only required for maximal production of the apoMoFe protein, while others (nifH, D, K, and S) are absolutely required for synthesis of this protein in E. coli. One curious result is that the nifH gene product, the peptide of the Fe protein, but not active Fe protein itself, is required for formation of the apoMoFe protein. This suggests the possibility of a ternary complex of the NifH, D, and K peptides as the substrate for the processing to form the apoMoFe protein. We also find that nifM, the gene which processes the nifH protein into Fe protein (Howard, K.S., McLean, P.A., Hansen, F. B., Lemley, P.V., Kobla, K.S. & Orme-Johnson, W.H. (1986) J. Biol. Chem. 261, 772-778) can, under certain circumstances, partially replace other processing genes (i.e. nifTYU and/or WZ) although it is not essential for apoMoFe protein formation. It also appears that nifS and nifU, reported to play a role in Fe protein production in Azotobacter vinelandii, play no such role in K. pneumoniae, although these genes are involved in apoMoFe formation.(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Apoproteínas/genética , Proteínas de Bactérias , Escherichia coli/genética , Ferredoxinas/genética , Genes Bacterianos , Klebsiella pneumoniae/genética , Molibdoferredoxina/genética , Fixação de Nitrogênio/genética , Nitrogenase/genética , Sequência de Aminoácidos , Apoproteínas/isolamento & purificação , Apoproteínas/metabolismo , Deleção Cromossômica , Escherichia coli/enzimologia , Genótipo , Klebsiella pneumoniae/enzimologia , Dados de Sequência Molecular , Peso Molecular , Molibdoferredoxina/isolamento & purificação , Molibdoferredoxina/metabolismo , Mutação , Fenótipo , Plasmídeos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA