Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 202: 157-173, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28661518

RESUMO

Many traditional solvents have drawbacks including sustainability and toxicity issues. Legislation, such as REACH, is driving the move towards less hazardous chemicals and production processes. Therefore, safer bio-based solvents need to be developed. Herein, a 10 step method has been proposed for the development of new bio-based solvents, which utilises a combination of in silico modelling of Hansen solubility parameters (HSPs), experimental Kamlet-Abboud-Taft parameters, a selection of green synthetic routes followed by application testing and toxicity measurements. The challenges that the chemical industry face in the development of new bio-based solvents are highlighted through a case study on methyl(2,2-dimethyl-1,3-dioxolan-4-yl)methyl carbonate (MMC), which can be synthesised from glycerol. Although MMC is an attractive candidate as a replacement solvent, simply being bio-derived is not enough for a molecule to be regarded as green. The methodology of solvent development described here is a broadly applicable protocol that will indicate if a new bio-based solvent is functionally proficient, and will also highlight the importance of early stage Kamlet-Abboud-Taft parameters determination and toxicity testing in the development of a green solvent.


Assuntos
Formiatos/síntese química , Formiatos/química , Estrutura Molecular , Solventes/síntese química , Solventes/química
2.
J Biomech ; 46(14): 2411-8, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23972433

RESUMO

Bone is biphasic with an organic matrix and an inorganic mineral component. As we age bone's susceptibility to fracture increases. It has been shown that there is no change in mean mineralization with aging, but bone nevertheless becomes less tough. This aging effect is therefore likely related to the organic phase. Under mechanical loading, immediately prior to failure, bone has been observed to visually become more opaque and has been termed stress-whitening. Stress-whitening is known to make materials tougher. The goal of this investigation was to investigate stress-whitening in the collagenous matrix of bone. Hydrogen bonds play a key role in collagen stability and we hypothesize that changes in hydrogen bonding will significantly affect matrix stiffness, toughness and stress whitening. Demineralized bone specimens were loaded in tension and stress-whitening was monitored. The effect of hydrogen bonding on mechanical properties and stress-whitening process was probed by altering the Hansen's hydrogen bonding parameter (δh) of the immersing solution. The Hansen's hydrogen bonding parameter of the immersing fluid affected the morphology, mechanical properties and stress whitening of specimens. Specimens were visually whiter in the absence of mechanical load in low δh solvents (the specimens solvent-whitened). Both the observed stress-whitening and solvent-whitening were reversible and repeatable processes. The observed solvent-whitening that occurred without the presence of load was consistent with solvent-induced optical clearing (the opposite of whitening) in skin caused by collagen fibril swelling. Stress whitening and solvent whitening can be explained by a common mechanism, collagen fibril densification and thinning, leading to an increased distinction between the collagen fibrillar phase and immersing fluid, ultimately leading to more scattering. Bones may be at a greater risk for fracture as we age because solubility of the matrix changes, thus making the collagen less hydrated (and more brittle) even in the same solvent.


Assuntos
Colágeno/fisiologia , Ossos Metacarpais/fisiopatologia , Animais , Colágeno/química , Módulo de Elasticidade , Etanol/química , Formiatos/química , Cavalos , Ligação de Hidrogênio , Ossos Metacarpais/química , Solventes/química , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA