Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Food Res Int ; 173(Pt 2): 113388, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803726

RESUMO

Aspergillus ochraceus is an ochratoxin-producing fungus which contaminates coffee. In this study the antifungal effect of the yeast Hanseniaspora opuntiae on three Aspergillus ochraceus strains (IOC 4417, IOC 4462, Ao 14) was evaluated in vitro and on coffee fruits. H. opuntiae (106 and 107 cells mL-1) reduced in vitro fungal growth from 82% to 87%, when co-cultivated with A. ochraceus. The yeast cell free supernatant (CFS) inhibited conidial germination from 76.5% to 92.5%, and hyphal growth from 54% to 78%. The yeast (107 and 109 cells mL-1) applied on coffee fruits delayed fruit decay by A. ochraceus (IOC 4417 and Ao 14) until the 9th day, and was significantly different (p < 0.05) from the controls. Furthermore, the ultrastructure of the yeast-fungus interaction on the coffee fruit surface showed yeast attachment to A. ochraceus hyphae, and morphological alterations in fungal structures, with hyphal abnormalities, such as tortuous hyphae with irregular, non-uniform surface compared to the control without yeast. H. opuntiae showed efficacy as biocontrol agent and, to the best of our knowledge, this is the first study on the antifungal activity of H. opuntiae against A. ochraceus on coffee fruits Nevertheless, application of H. opuntiae to the crop in the field requires further studies.


Assuntos
Aspergillus ochraceus , Café , Café/metabolismo , Frutas/microbiologia , Antifúngicos/farmacologia
2.
Int J Food Microbiol ; 387: 110057, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36563533

RESUMO

Our study investigated the potential of Annona squamosa (L.) fruit as a reservoir of yeasts and lactic acid bacteria having biotechnological implications, and phenolics capable of modifying the ecology of microbial consortia. Only a single species of lactic acid bacteria (Enterococcus faecalis) was identified, while Annona fruit seemed to be a preferred niche for yeasts (Saccharomyces cerevisiae, Hanseniaspora uvarum), which were differentially distributed in the fruit. In order to identify ecological implications for inherent phenolics, the antimicrobial potential of water- and methanol/water-soluble extracts from peel and pulp was studied. Pulp extracts did not show any antimicrobial activity against the microbial indicators, while some Gram-positive bacteria (Staphylococcus aureus, Staphylococcus saprophyticus, Listeria monocytogenes, Bacillus megaterium) were susceptible to peel extracts. Among lactic acid bacteria used as indicators, only Lactococcus lactis and Weissella cibaria were inhibited. The chemical profiling of methanol/water-soluble phenolics from Annona peel reported a full panel of 41 phenolics, mainly procyanidins and catechin derivatives. The antimicrobial activity was associated to specific compounds (procyanidin dimer type B [isomer 1], rutin [isomer 2], catechin diglucopyranoside), in addition to unidentified catechin derivatives. E. faecalis, which was detected in the epiphytic microbiota, was well adapted to the phenolics from the peel. Peel phenolics had a growth-promoting effect toward the autochthonous yeasts S. cerevisiae and H. uvarum.


Assuntos
Annona , Anti-Infecciosos , Catequina , Malus , Frutas/microbiologia , Catequina/análise , Annona/química , Annona/microbiologia , Metanol/análise , Saccharomyces cerevisiae , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/análise , Água/análise , Açúcares/análise
3.
Toxins (Basel) ; 13(9)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34564653

RESUMO

The occurrence of mycotoxins on grapes poses a high risk for food safety; thus, it is necessary to implement effective prevention methods. In this work, a metagenomic approach revealed the presence of important mycotoxigenic fungi in grape berries, including Aspergillus flavus, Aspergillus niger aggregate species, or Aspergillus section Circumdati. However, A. carbonarius was not detected in any sample. One of the samples was not contaminated by any mycotoxigenic species, and, therefore, it was selected for the isolation of potential biocontrol agents. In this context, Hanseniaspora uvarum U1 was selected for biocontrol in vitro assays. The results showed that this yeast is able to reduce the growth rate of the main ochratoxigenic and aflatoxigenic Aspergillus spp. occurring on grapes. Moreover, H. uvarum U1 seems to be an effective detoxifying agent for aflatoxin B1 and ochratoxin A, probably mediated by the mechanisms of adsorption to the cell wall and other active mechanisms. Therefore, H. uvarum U1 should be considered in an integrated approach to preventing AFB1 and OTA in grapes due to its potential as a biocontrol and detoxifying agent.


Assuntos
Microbiologia de Alimentos , Frutas/microbiologia , Hanseniaspora/fisiologia , Micobioma , Micotoxinas/análise , Vitis/microbiologia , Espanha
4.
Int J Food Microbiol ; 350: 109225, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34023678

RESUMO

To address a knowledge gap about the grape berry mycobiome from Washington State vineyards, next-generation sequencing of the internal transcribed spacer region (ITS1) was used to identify native yeast and fungal species on berries of cultivar 'Cabernet Sauvignon' from two vineyards at veraison and harvest in 2015 and 2016. Four hundred fifty-six different yeast amplicon sequence variants (ASV), representing 184 distinct taxa, and 2467 non-yeast fungal ASV (791 distinct taxa) were identified in this study. A set of 50 recurrent yeast taxa, including Phaeococcomyces, Vishniacozyma and Metschnikowia, were found at both locations and sampling years. These yeast species were monitored from the vineyard into laboratory-scale spontaneous fermentations. Taxa assignable to Metschnikowia and Saccharomyces persisted during fermentation, whereas Curvibasidium, which also has possible impact on biocontrol and wine quality, did not. Sulfite generally reduced yeast diversity and richness, but its effect on the abundance of specific yeasts during fermentation was negligible. Among the 106 recurring non-yeast fungal taxa, Alternaria, Cladosporium and Ulocladium were especially abundant in the vineyard. Vineyard location was the primary factor that accounted for the variation among both communities, followed by year and berry developmental stage. The Washington mycobiomes were compared to those from other parts of the world. Sixteen recurrent yeast species appeared to be unique to Washington State vineyards. This subset also contained a higher proportion of species associated with cold and extreme environments, relative to other localities. Certain yeast and non-yeast fungal species known to suppress diseases or modify wine sensory properties were present in Washington vineyards, and likely have consequences to vineyard health and wine quality.


Assuntos
Ascomicetos/classificação , Basidiomycota/classificação , Frutas/microbiologia , Micobioma/genética , Vitis/microbiologia , Vinho/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Basidiomycota/genética , Basidiomycota/isolamento & purificação , DNA Intergênico/genética , Fazendas , Fermentação , Sequenciamento de Nucleotídeos em Larga Escala , Washington , Fermento Seco , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
5.
Food Microbiol ; 97: 103741, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33653520

RESUMO

Tomato fruit is susceptible to Alternaria spp. spoilage, which poses a health risk due to their mycotoxin production. Biopreservation relies on the use of whole microorganisms or their metabolites to manage spoilage microorganisms including filamentous fungi. However, the use of treatments at fungistatic level might activate intracellular pathways, which can cause an increment in mycotoxin accumulation. The objective of this work was to evaluate the effect of two strains of Debaryomyces hansenii and the antifungal protein PgAFP at 10 and 40 µg/mL. Both growth and production of two of the most common mycotoxins (tenuazonic acid and alternariol monomethyl ether) by Alternaria tenuissima sp.-grp. and Alternaria arborescens sp.-grp. on a tomato-based matrix, were analysed at 12 °C. Additionally, the impact of these biocontrol agents on the stress-related RHO1 gene expression was assessed. All treatments reduced mycotoxin accumulation (from 27 to 92% of inhibition). Their mode of action against Alternaria spp. in tomato seems unrelated to damages to fungal cell wall integrity at the genomic level. Therefore, the two D. hansenii strains (CECT 10352 and CECT 10353) and the antifungal protein PgAFP at 10 µg/mL are suggested as biocontrol strategies in tomato fruit at postharvest stage.


Assuntos
Alternaria/efeitos dos fármacos , Alternaria/metabolismo , Debaryomyces/metabolismo , Proteínas Fúngicas/metabolismo , Micotoxinas/biossíntese , Doenças das Plantas/microbiologia , Alternaria/genética , Alternaria/crescimento & desenvolvimento , Debaryomyces/química , Debaryomyces/genética , Frutas/microbiologia , Proteínas Fúngicas/genética , Fungicidas Industriais
6.
J Appl Microbiol ; 131(2): 833-843, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33420735

RESUMO

AIMS: Alternaria alternata is a major contaminant of wine grapes, meaning a health risk for wine consumers due to the accumulation of toxic metabolites. To develop a successful biofungicide, the effectiveness of epiphytic wine grape yeasts against A. alternata growth and toxin production was assessed in vitro under temperature and aW conditions that simulate those present in the field. METHODS AND RESULTS: The effect of 14 antagonistic yeasts was evaluated on growth and alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) production by three A. alternata strains in a synthetic medium with composition similar to grape (SN) at three temperatures (15, 25 and 30°C). All Metschnikowia sp. yeast strains evaluated completely prevented A. alternata growth and mycotoxin production at all temperatures in SN medium. Meanwhile, the growth inhibition exerted by Starmerella bacillaris yeast strains was higher at 30°C, followed by 25 and 15°C, being able to show a stimulating or inhibiting effect. Hanseniaspora uvarum yeast strains showed a growth promoting activity higher at 15°C, followed by 25 and 30°C. Even at conditions where A. alternata growth was stimulated by the S. bacillaris and H. uvarum yeasts, high inhibitions of mycotoxin production (AOH, AME and TA) were observed, indicating a complex interaction between growth and mycotoxin production. CONCLUSION: There is a significant influence of temperature on the effectiveness of biocontrol against A. alternata growth and mycotoxin production. Metschnikowia sp. strains are good candidates to compose a biofungicide against A. alternata. SIGNIFICANCE AND IMPACT OF THE STUDY: Among the different antagonistic yeasts evaluated, only Metschnikowia sp. strains were equally effective reducing A. alternata growth and mycotoxin at different temperatures underlining the importance of considering environmental factors in the selection of the antagonists.


Assuntos
Antibiose , Micotoxinas , Vitis , Leveduras/fisiologia , Alternaria/patogenicidade , Frutas/microbiologia , Hanseniaspora , Lactonas/análise , Micotoxinas/análise , Saccharomycetales , Vitis/microbiologia , Vinho
7.
Food Microbiol ; 92: 103556, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950150

RESUMO

Rotting caused by grey mould (Botrytis cinerea) is a concerning disease for numerous crops both pre- and postharvest stages. Application of antagonistic yeasts is a promising strategy for controlling grey mould incidence which could mitigate undesirable consequences of using synthetic fungicides. In this work, a screening for detection of yeasts isolated from figs producers of antifungal volatile organic compounds (VOCs) were performed by confrontation in double dishes systems. Eleven out of 34 yeasts confronted reduced B. cinerea growth parameter in vitro. This reduction was correlated (p ≤ 0.050) with the production of 10 volatile compounds: two acids (acetic acid and octanoic acid), 7 esters (Ethyl propionate, n-Propyl acetate, Isobutyl acetate, 2-methylbutyl acetate, furfuryl acetate, phenylmethyl acetate, 2-phenylethyl acetate) and one ketone (Heptan-2-one). In bases on in vitro assay, Hanseniaspora uvarum 793 was applied to in vivo assays with strawberries and cherries. The reduction of incidence of B. cinerea in strawberries at 7 °C and 25 °C was 54.9 and 72.1% after 6 and 3 days, respectively. The reduction of incidence of B. cinerea in cherries at 7 °C and 25 °C was 48.9 and 45.6% after 5 and 4 days, respectively. These results showed that VOCs produced by Hanseniaspora uvarum 793 are effective in the control of incidence of Botrytis cinerea in fruits, being a potential alternative to chemical fungicide.


Assuntos
Botrytis/efeitos dos fármacos , Frutas/microbiologia , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Compostos Orgânicos Voláteis/farmacologia , Leveduras/química , Botrytis/crescimento & desenvolvimento , Ficus/microbiologia , Fragaria/microbiologia , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Hanseniaspora/efeitos dos fármacos , Hanseniaspora/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Prunus avium/microbiologia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Leveduras/genética , Leveduras/isolamento & purificação , Leveduras/metabolismo
8.
Pol J Microbiol ; 69: 1-11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735105

RESUMO

Yeasts, commonly present on the surface of fruits, are of industrial interest for the production of enzymes, flavorings, and bioactive compounds, and have many other scientific uses. The Amazonian rainforest may be a good source of new species or strains of yeasts, but their presence on Amazonian fruits is unknown. The aim of this study was to identify and characterize yeasts isolated from Amazonian native fruits using molecular and phenotypic methods. In total, 81 yeast isolates were obtained from 10 fruits species. Rep-PCR showed 29 strain profiles. Using a combination of restriction-fragment length polymorphism (RFLP) of the 5.8S-ITS region and D1/D2 sequencing of the 26S rRNA gene, 16 species were identified belonging to genera Candida, Debaryomyces, Hanseniaspora, Kodamaea, Martiniozyma, and Meyerozyma. The most dominant species were Candida tropicalis, Debaryomyces hansenii, Hanseniaspora opuntiae, and Hanseniaspora thailandica. H. opuntiae and H. thailandica showed the highest number of the strain profiles. Phenotypic profiles were variable between species, and even among strains. Screening for hydrolases showed lipolytic activity in only one isolate, while proteolytic, cellulolytic and amylolytic capabilities were not detected. Yeast presence among fruits varied, with cidra (Citrus medica) and ungurahui (Oenocarpus bataua) having the highest number of species associated. This investigation broadens the understanding and possible biotechnological uses of yeast strains obtained from Amazonian native fruits.Yeasts, commonly present on the surface of fruits, are of industrial interest for the production of enzymes, flavorings, and bioactive compounds, and have many other scientific uses. The Amazonian rainforest may be a good source of new species or strains of yeasts, but their presence on Amazonian fruits is unknown. The aim of this study was to identify and characterize yeasts isolated from Amazonian native fruits using molecular and phenotypic methods. In total, 81 yeast isolates were obtained from 10 fruits species. Rep-PCR showed 29 strain profiles. Using a combination of restriction-fragment length polymorphism (RFLP) of the 5.8S-ITS region and D1/D2 sequencing of the 26S rRNA gene, 16 species were identified belonging to genera Candida, Debaryomyces, Hanseniaspora, Kodamaea, Martiniozyma, and Meyerozyma. The most dominant species were Candida tropicalis, Debaryomyces hansenii, Hanseniaspora opuntiae, and Hanseniaspora thailandica. H. opuntiae and H. thailandica showed the highest number of the strain profiles. Phenotypic profiles were variable between species, and even among strains. Screening for hydrolases showed lipolytic activity in only one isolate, while proteolytic, cellulolytic and amylolytic capabilities were not detected. Yeast presence among fruits varied, with cidra (Citrus medica) and ungurahui (Oenocarpus bataua) having the highest number of species associated. This investigation broadens the understanding and possible biotechnological uses of yeast strains obtained from Amazonian native fruits.


Assuntos
Frutas/microbiologia , Leveduras/classificação , Brasil , DNA Fúngico/genética , DNA Intergênico/genética , Microbiologia Industrial , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Ribossômico/genética , Leveduras/enzimologia , Leveduras/genética , Leveduras/isolamento & purificação
9.
PLoS One ; 15(3): e0230269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32176885

RESUMO

Secondary peat swamp forest (PSF) arise by degradation of primary PSF as a result of fire and human activities. Yeasts diversity of Kuan Kreng (KK) and Rayong Botanical Garden (RBG) PSF, which are two secondary PSF in southern and in eastern Thailand, respectively, were investigated. Yeasts were isolated from soil and peat soil by the dilution plate and enrichment techniques. From six samples collected from KK PSF, 35 strains were obtained, and they were identified based on the sequence analysis of the D1/D2 region of the large subunit (LSU) rRNA gene 13 species in 12 genera, and one potential new species of the genus Galactomyces were detected. Thirty-two strains were obtained from six samples collected from RBG PSF and 26 strains were identified as 13 known yeast species in 11 genera, whereas six strains were found to represent two potential new species of the genera Papiliotrema and Moesziomyces. Among yeast strains isolated from KK PSF, the number of strains in the phylum Ascomycota and Basidiomycota were equal, whereas there were slightly fewer strains in Ascomycota than in Basidiomycota among the strains obtained from RBG PSF. The yeast strains were evaluated for their antagonistic activities against fungal pathogens which cause rice diseases (Fusarium moniliforme, Helminthosporium oryzae, Rhizoctonia solani, Curvularia lunata and Pyricularia grisea) and postharvest disease of fruits (Phytophthora palmivora, Lasiodiplodia theobromae and Colletotrichum gloeosporioides). Twelve strains of seven species were found to be antagonistic yeast strains. Starmerella kuoi DMKU-SPS13-6, Hanseniaspora lindneri DMKU ESS10-9 and Piskurozyma taiwanensis DMKU-SPS12-2 capable to inhibit R. solani by 70.1-76.2%, Wickerhamomyces anomalus DMKU SPS6-1 and three Rhodotorula taiwanensis strains (DMKU SPS8-1, DMKU ESS9-3, DMKU SPS9-2) inhibited C. lunata by 69.8-71.9%, Hanseniaspora lindneri DMKU ESS10-9 and Scheffersomyces spartinae DMKU SPS9-3 inhibited P. grisea by 81.9-84.4% and four Papiliotrema laurentii strains (DMKU-SPS15-1, DMKU-ESS11-2, DMKU-ESS8-2, DMKU-ESS6-4) inhibited P. palmivora by 53.2-59.5%.


Assuntos
Florestas , Frutas/microbiologia , Doenças das Plantas/microbiologia , Solo , Áreas Alagadas , Leveduras/fisiologia , Geografia , Filogenia , Microbiologia do Solo , Tailândia , Leveduras/classificação , Leveduras/genética , Leveduras/crescimento & desenvolvimento
10.
Food Res Int ; 129: 108840, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036887

RESUMO

Hanseniaspora sp. yeast was stimulated using pulsed electric field (PEF) during the different fermentation phases. The impact of PEF parameters on the growth rate and substrate consumption was studied. The PEF intensities chosen for this study were mainly in the range of 72-285 V cm-1. A PEF treatment chamber was designed for this study with a ratio of 1:50 between the volume of the fermenter and the volume of the chamber. It allows the recycling of the culture medium using a peristaltic pump, and the yeast treatment by PEF during the fermentation. The continuous circulation of the medium allows avoiding the increase of the temperature inside the fermenter, the cell aggregation, as well as the agitation and the scale-up issues that are associated with the PEF treatment of the entire volume in batch mode. The maximal yeast growth rate was obtained using an electric field strength of 285 V cm-1 applied during both Lag and early exponential phase, and Log phase. This observation was accompanied by a faster consumption of glucose in the medium during the fermentation. Besides, the sensitivity of Hanseniaspora sp. yeast to PEF treatment was more pronounced during the Lag and early exponential phase than the Log phase. The results obtained exposed the great benefit of stimulating Hanseniaspora sp. yeast using moderate PEF as it reduces the fermentation time along with increasing the biomass concentration.


Assuntos
Frutas/microbiologia , Hanseniaspora/metabolismo , Malus/microbiologia , Bebidas Alcoólicas , Fenômenos Eletrofisiológicos , Fermentação
11.
J Sci Food Agric ; 100(3): 926-935, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31523827

RESUMO

BACKGROUND: The effects were studied of different inoculation strategies for selected starters -yeasts and lactic acid bacteria (LAB) - used for the fermentation process of two Greek olive cultivars, Conservolea and Kalamàta. The LAB strains applied were Leuconostoc mesenteroides K T5-1 and L. plantarum A 135-5; the selected yeast strains were S. cerevisiae KI 30-16 and Debaryomyces hansenii A 15-44 for Kalamàta and Conservolea olives, respectively. RESULTS: Table olive fermentation processes were monitored by performing microbiological analyses, and by monitoring changes in pH, titratable acidity and salinity, sugar consumption, and the evolution of volatile compounds. Structural modifications occurring in phenolic compounds of brine were investigated during the fermentation using liquid chromatography / diode array detection / electrospray ion trap tandem mass spectrometry (LC/DAD/ESI-MSn ) and quantified by high-performance liquid chromatography (HPLC) using a diode array detector. Phenolic compounds in processed Kalamàta olive brines consisted of phenolic acids, verbascoside, caffeoyl-6-secologanoside, comselogoside, and the dialdehydic form of decarboxymethylelenolic acid linked to hydroxytyrosol, whereas oleoside and oleoside 11-methyl ester were identified only in Conservolea olive brines. CONCLUSION: Volatile profile and sensory evaluation revealed that the 'MIX' (co-inoculum of yeast and LAB strain) inoculation strategy led to the most aromatic and acceptable Kalamàta olives. For the Conservolea table olives, the 'YL' treatment gave the most aromatic and the overall most acceptable product. © 2019 Society of Chemical Industry.


Assuntos
Debaryomyces/metabolismo , Microbiologia de Alimentos/métodos , Lactobacillales/metabolismo , Olea/química , Olea/microbiologia , Fenol/metabolismo , Saccharomyces cerevisiae/metabolismo , Fermentação , Frutas/química , Frutas/microbiologia , Humanos , Fenol/análise , Sais/análise , Sais/metabolismo , Paladar
12.
Food Funct ; 10(12): 7767-7781, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31750489

RESUMO

Strawberries are vulnerable to physical injuries and microbial invasion. To explore if beneficial lactic acid bacteria can improve the shelf life and edible quality of postharvest strawberry fruits, the effects of Lactobacillus delbrueckii subsp. bulgaricus (ital.) F17 (F17) and Leuconostoc lactis (ital.) H52 (H52) inoculation on the strawberry microbial community structure and saleable characteristics were examined by bacterial 16S rRNA and fungal ITS sequencing techniques. Lactobacillus (ital.) F17 and Leuconostoc lactis (ital.) H52 isolated from the traditional fermented yak milk in the Qinghai-Tibetan Plateau were used as the potential probiotic inocula. Samples from treated strawberries stored at 25 °C for 0, 12, 24, 48, and 72 hours were analyzed for their pH, weight loss percentage, decay percentage, total soluble solid content (SSC) and microbial counts, and for microbiome community diversity and canonical correspondence analysis. The results showed that F17 and H52 did not only significantly reduce the weight loss and decay percentage of strawberry fruits, but also delayed the decrease of the total SSC and pH (P < 0.05). In addition, F17 and H52 significantly inhibited the growth and colonization of aerobic mesophilic bacteria, yeast, mold and coliform bacteria. In particular, by comparing the microbiota composition of the samples, F17 significantly inhibited Pantoea, Mycospherella, unclassified_Pleosporales, Aureobasidium and Phoma at the genus level, whereas H52 inhibited Bacillus, Streptophyta, Mycospherella, Aureobasidium and Phoma. Moreover, analysis of alpha and beta diversity revealed that F17 and H52 had a significantly greater inhibitory effect on bacterial species compared to fungi. The results of canonical correspondence analysis revealed that the total SSC and pH were positively correlated with bacteria, whereas the decay percentage, weight loss percentage and total SSC were positively associated with fungi. Additionally, Podosphaera, Hanseniaspora, Botrytis and unclassified_Pleosporales were positively correlated with strawberry fruit decay and weight loss percentage. As a general result, Lactobacillus F17 and Leuconostoc lactis H52 have the potential to promote biological preservation, which is economically important to reduce the loss due to strawberry spoilage.


Assuntos
Conservação de Alimentos/métodos , Fragaria/microbiologia , Frutas/microbiologia , Lactobacillus delbrueckii/fisiologia , Leuconostoc/fisiologia , Microbiota , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Bovinos , Armazenamento de Alimentos , Fragaria/química , Fragaria/efeitos dos fármacos , Frutas/química , Frutas/efeitos dos fármacos , Fungos/classificação , Fungos/efeitos dos fármacos , Fungos/genética , Fungos/isolamento & purificação , Leite/microbiologia , Probióticos/farmacologia
13.
Int J Food Microbiol ; 289: 223-230, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30391797

RESUMO

Yeast-like fungi and yeasts residing on carposphere of withered grapes for Italian passito wine production have been scarcely investigated. In the present study, isolates from single berries, both sound and damaged, of Nosiola, Corvina and Garganega varieties were analyzed at the end of the withering process. Great variation of cell concentration among single berries was observed. In sound berries, yeast-like fungi were significantly more frequent than yeasts. Species identification of isolates was carried out by BLAST comparative analysis on gene databases and phylogenetic approach. All yeast-like fungi isolates belonged to Aureobasidium pullulans. They displayed different culture and physiological characteristics and inhibitory capacity against phytopathogenic fungi. Moreover, PCR profile analysis revealed high genotypic similarity among these strains. A total of 35 species were recognized among yeast isolates. Ascomycetes prevailed over basidiomycetes. To the best of our knowledge, Naganishia onofrii and Rhodosporidiobolus odoratus were identified for the first time among yeasts isolated from grapes, must or wine. Hanseniaspora uvarum and Starmerella bacillaris were the most frequent species. Most species were found only in one grape variety (nine in Nosiola, 10 in Corvina and five in Garganega). The sanitary state of withered grapes could have an important impact on the structure of these epiphytic populations.


Assuntos
Fungos/fisiologia , Vitis/microbiologia , Leveduras/fisiologia , Biodiversidade , Frutas/microbiologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Genes Fúngicos/genética , Genótipo , Itália , Filogenia , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
14.
Environ Entomol ; 48(1): 68-79, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30520973

RESUMO

The invasive vinegar fly, Drosophila suzukii Matsumura, has emerged as one of the most serious arthropod pests of primocane red raspberries (Rubus ideaus L.) in the United States. In raspberries, D. suzukii encounter a diverse community of microbes, including fruit rot pathogens such as Botrytis cinerea Pers and Cladosporium cladosporioides de Vries. In this study, our primary objectives were to evaluate D. suzukii-fungal associations and determine D. suzukii's influence on fungal communities in raspberry fruit. Through culture-based surveys of larval gut microbes, we isolated several yeast fungi (primarily Hanseniaspora spp.), as well as Cladosporium, Botrytis, and several other non-yeast fungi from larval frass, suggesting that D. suzukii larvae encounter and feed on these fungi. Subsequent field surveys confirmed that D. suzukii larvae occurred in berries affected by Botrytis fruit rot and Cladosporium fruit rot. Under laboratory conditions, D. suzukii may facilitate C. cladosporioides infections, likely through the introduction of epiphytic propagules on the fruit surface. We could not detect impacts on B. cinerea infections or establish a clear vectoring relationship for either fruit rot. These studies provide evidence for an association between D. suzukii and fungal fruit rot pathogens. Understanding interactions between raspberry fruit, D. suzukii, and fungal microbes-especially whether D. suzukii facilitates the development of fruit rots or conversely, if fruit rots influence D. suzukii infestation patterns-may improve pest and pathogen management programs.


Assuntos
Botrytis , Cladosporium , Drosophila/microbiologia , Rubus/microbiologia , Animais , Fezes/microbiologia , Feminino , Frutas/microbiologia , Larva/microbiologia , Masculino , Leveduras
15.
Food Chem ; 274: 907-914, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30373027

RESUMO

This present study tested the extent to which 2% w/v trehalose enhanced the proteins expression profile of Hanseniaspora uvarum Y3. Furthermore, it explored the relative gene expression of stilbene synthase (StSy), one of the vital defense-related genes found in the skin of grapes. The proteomics profile revealed that 29 proteins were differentially expressed out of which 26 were significantly up-regulated and 3 were download-regulated. The pathogenesis related (PR) and other protein spots were visible at 97.4 kDa and 14.4 kDa. Peroxiredoxin TSA1 and superoxide dismutase were the main proteins involved in defense response and both proteins were significantly up-regulated. The carbohydrate and energy metabolism proteins were also significantly up-regulated. The results revealed that the treatments were associated with substantial increase in peroxidase activity compared to the control. StSy relative gene expression level was observed to increase by 2.5-fold in grapes treated with the pre-enhanced H. uvarum compared to the control.


Assuntos
Agentes de Controle Biológico , Proteínas Fúngicas/metabolismo , Hanseniaspora/metabolismo , Trealose/farmacologia , Vitis/microbiologia , Aciltransferases/genética , Aciltransferases/metabolismo , Frutas/efeitos dos fármacos , Frutas/metabolismo , Frutas/microbiologia , Proteínas Fúngicas/análise , Regulação da Expressão Gênica de Plantas , Hanseniaspora/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica/métodos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Vitis/metabolismo
16.
Folia Microbiol (Praha) ; 63(6): 677-684, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29736893

RESUMO

Identification of yeasts isolated from apple juices of two cider houses (one located in a plain area and one in an alpine area) was carried out by culture-based method. Wallerstein Laboratory Nutrient Agar was used as medium for isolation and preliminary yeasts identification. A total of 20 species of yeasts belonging to ten different genera were identified using both BLAST algorithm for pairwise sequence comparison and phylogenetic approaches. A wide variety of non-Saccharomyces species was found. Interestingly, Candida railenensis, Candida cylindracea, Hanseniaspora meyeri, Hanseniaspora pseudoguilliermondii, and Metschnikowia sinensis were recovered for the first time in the yeast community of an apple environment. Phylogenetic analysis revealed a better resolution in identifying Metschnikowia and Moesziomyces isolates than comparative analysis using the GenBank or YeastIP gene databases. This study provides important data on yeast microbiota of apple juice and evidenced differences between two geographical cider production areas in terms of species composition.


Assuntos
Biodiversidade , Sucos de Frutas e Vegetais/microbiologia , Malus/microbiologia , Leveduras/isolamento & purificação , Leveduras/metabolismo , Meios de Cultura/metabolismo , Fermentação , Microbiologia de Alimentos , Frutas/metabolismo , Frutas/microbiologia , Malus/metabolismo , Filogenia , Leveduras/classificação , Leveduras/genética
17.
Food Res Int ; 108: 119-127, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735040

RESUMO

Wine aroma response to a selected Hanseniaspora uvarum Yun268 strain was investigated using different inoculation strategies with commercial Saccharomyces cerevisiae yeast, namely, simultaneous fermentation (SiF), sequential fermentation (SeF), S. cerevisiae fermentation treated with extracellular extract of H. uvarum (EE), and pure S. cerevisiae fermentation (PF). Contributive volatiles in the perception of enhanced aroma traits were uncovered by partial least-squares regression. Results showed that controlled inoculation resulted into different amounts of H. uvarum Yun268, which distinctively affected the chemical and sensory profiles of wines. The concentration of aromatic compounds could be increased by H. uvarum Yun268 yeasts via high levels of ß-glucosidase activity and fatty acids. Terpenes, C13-norisoprenoids, acetate esters, ethyl esters, and fatty acids served as the impact volatiles that contributed to the enhanced aroma traits. SiF specifically increased the contents of C13-norisoprenoids, terpenes, and ethyl esters, while EE enhanced varietal volatile content rather than those of fermentative ones. However, excessive H. uvarum Yun268 in sequential inoculation elevated the concentrations of acetate esters and volatile phenols, triggering nail polish odor in Cabernet Sauvignon red wines.


Assuntos
Fermentação , Microbiologia de Alimentos/métodos , Frutas/microbiologia , Hanseniaspora/metabolismo , Odorantes/análise , Saccharomyces cerevisiae/metabolismo , Olfato , Vitis/microbiologia , Compostos Orgânicos Voláteis/análise , Vinho/microbiologia , Etanol/metabolismo , Análise de Alimentos , Humanos , Julgamento , Análise dos Mínimos Quadrados , Percepção Olfatória , Fatores de Tempo
18.
Folia Microbiol (Praha) ; 63(6): 685-693, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29752627

RESUMO

The study of grape microflora is of interest when autochthonous yeasts, which are related to typical wine characteristics, are intended to be used in winemaking. The election of matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) as the first method for yeast identification was based on its accuracy and rapidity compared to alternative laboratory protocols for identification. The aims of this study are to consolidate the MALDI-TOF MS Supplementary database for environmental yeasts already constructed, to expand it through the addition of standard spectra of not included yeast species, and to discuss the grape microflora encountered in Southern Brazil. A total of 358 strains, isolated from grape berries, were submitted to protein profiling employing Biotyper and Supplementary database. Molecular biology techniques were used as alternatives to identify 6.4% of strains not promptly designated by protein profiling. These strains corresponded to the species Candida californica, Zygoascus meyerae, Candida akabanensis, Candida azyma, and Hanseniaspora vineae. The MALDI-TOF MS spectra of the identified species were added to Supplementary database. The presented results strengthen the need for further expansion of the mass spectra database to broaden its microbiological application.


Assuntos
Biodiversidade , Vitis/microbiologia , Leveduras/isolamento & purificação , Brasil , Bases de Dados Genéticas , Frutas/microbiologia , Filogenia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vinho/análise , Leveduras/classificação , Leveduras/genética
19.
J Sci Food Agric ; 98(12): 4665-4672, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29533461

RESUMO

BACKGROUND: Primarily, chemical pesticides are commonly used to control preharvest and postharvest diseases of fruits and vegetables. However, there is strong public concern regarding the human and environmental health problems that might emanate from the residues of these chemical pesticides. As a result, biocontrol is often preferred due to its safety for humans and animals. The microbial antagonists employed often encounter variable climatic conditions, which affect their efficacy. In this study, the biocontrol efficacy of Hanseniaspora uvarum enhanced with trehalose against Aspergillus tubingensis and Penicillium commune in grapes was investigated. RESULTS: H. uvarum Y3 pretreated with 2.0% w/v trehalose in nutrient yeast dextrose broth (NYDB) before used significantly inhibited the incidence of decay and lesion diameter without affecting the sensory qualities of the grapes stored at either 4 °C or 20 °C. There was also a significant (P < 0.05) increase in the population dynamics of H. uvarum that was pretreated with 2% trehalose compared to that of H. uvarum alone. The in vitro assay on spore germination revealed an inhibition of A. tubingensis and P. commune by 85.6% and 87.0% respectively. Scanning electron microscopy results showed that both untreated H. uvarum and H. uvarum pre-treated with the 2% w/v trehalose before use inhibited fungal mycelium and development of grape rot. CONCLUSION: The biocontrol efficacy of H. uvarum was enhanced against grape rot caused by A. tubingensis and P. commune. The findings indicate the potential applicability of trehalose in the enhancement of H. uvarum. © 2018 Society of Chemical Industry.


Assuntos
Antibiose , Aspergillus/fisiologia , Hanseniaspora/metabolismo , Penicillium/fisiologia , Doenças das Plantas/prevenção & controle , Trealose/metabolismo , Vitis/microbiologia , Aspergillus/crescimento & desenvolvimento , Frutas/microbiologia , Hanseniaspora/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Micélio/fisiologia , Penicillium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia
20.
Int J Food Microbiol ; 266: 14-20, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29156243

RESUMO

Epiphytic isolates with yeast characteristics from grapes of the Malbec cultivar were obtained in order to find antagonists against Alternaria alternata. From a total of 111 isolates, 82% corresponded to the yeast-like organism Aureobasidium pullulans and the rest to the non-Saccharomyces yeasts Hanseniaspora uvarum (6.3%), Metschnikowia pulcherrima or spp. (5.4%), Cryptoccocus laurentti II (2.7%), Starmerella bacilaris or Candida zemplinina (2.7%) and Rhodotorula spp. (0.9%). The 22.4% (15 out of 67) of epiphytic yeasts and yeast-like organisms evaluated were able to reduce A. alternata infection from 0.0 to 4.4% when applied 2h previous to pathogen inoculation on wounds of grape berries. From these selected strains, 14 out of 15 strains completely prevented A. alternata infection (0.0%), which implies potential for field application. All Metschnikowia (pulcherrima or spp.), S. bacillaris and almost all H. uvarum evaluated strains showed antagonist capability against A. alternata. Meanwhile, none of the lesser nutritional requirement strains belonging to A. pullulans, Cr. laurenti II and Rhodotorula spp. did. All the yeasts with capacity to prevent A. alternata infection also reduced tenuazonic acid (TA) production by 81.2 to 99.8%, finding TA levels similar to negative controls. Therefore, the epiphytic yeasts selected are promising as biological control agents against Alternaria infection and toxin production in grapes for winemaking.


Assuntos
Alternaria/fisiologia , Agentes de Controle Biológico , Microbiologia de Alimentos , Vitis/microbiologia , Leveduras/metabolismo , Argentina , Frutas/microbiologia , Ácido Tenuazônico/biossíntese , Leveduras/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA