Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros


Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 24(2)2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30669453

RESUMO

New enantiomerically pure C16-alkyl diamides derived from trihydroxy cyclohexane-1,2-dicarboxylic acid have been synthesized from (-)-shikimic acid. The hydroxyl groups in these compounds are free or, alternatively, they present full or partial protection. Their gelling abilities towards several solvents have been tested and rationalized by means of the combined use of Hansen solubility parameters, scanning electron microscopy (SEM), and circular dichroism (CD), as well as computational calculations. All the results allowed us to account for the capability of each type of organogelator to interact with different solvents and for the main mode of aggregation. Thus, compounds with fully protected hydroxyl groups are good organogelators for methanol and ethanol. In contrast, a related compound bearing three free hydroxyl groups is insoluble in water and polar solvents including alcohols but it is able to gelate some low-polarity solvents. This last behavior can be justified by strong hydrogen bonding between molecules of organogelator, which competes advantageously with polar solvent interactions. As an intermediate case, an organogelator with two free hydroxyl groups presents an ambivalent ability to gelate both apolar and polar solvents by means of two aggregation patterns. These involve hydrogen bonding interactions of the unprotected hydroxyl groups in apolar solvents and intermolecular interactions between amide groups in polar ones.


Assuntos
Ácidos Cicloexanocarboxílicos/química , Ácidos Dicarboxílicos/química , Furanos/química , Géis/química , Ligação de Hidrogênio , Modelos Moleculares , Solubilidade , Solventes/química , Estereoisomerismo , Água/química
2.
J Chem Phys ; 145(10): 104301, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27634254

RESUMO

For track structure simulations in the Bragg peak region, measured electron emission cross sections of DNA constituents are required as input for developing parameterized model functions representing the scattering probabilities. In the present work, double differential cross sections were measured for the electron emission from vapor-phase pyrimidine, tetrahydrofuran, and trimethyl phosphate that are structural analogues to the base, the sugar, and the phosphate residue of the DNA, respectively. The range of proton energies was from 75 keV to 135 keV, the angles ranged from 15° to 135°, and the electron energies were measured from 10 eV to 200 eV. Single differential and total electron emission cross sections are derived by integration over angle and electron energy and compared to the semi-empirical Hansen-Kocbach-Stolterfoht (HKS) model and a quantum mechanical calculation employing the first Born approximation with corrected boundary conditions (CB1). The CB1 provides the best prediction of double and single differential cross section, while total cross sections can be fitted with semi-empirical models. The cross sections of the three samples are proportional to their total number of valence electrons.


Assuntos
DNA/química , Elétrons , Prótons , Furanos/química , Modelos Moleculares , Conformação Molecular , Organofosfatos/química , Pirimidinas/química , Volatilização
3.
Int J Mol Sci ; 16(4): 8430-53, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25884332

RESUMO

The present study was designed to evaluate the performance of alternative bio-based solvents, more especially 2-methyltetrahydrofuran, obtained from crop's byproducts for the substitution of petroleum solvents such as hexane in the extraction of fat and oils for food (edible oil) and non-food (bio fuel) applications. First a solvent selection as well as an evaluation of the performance was made with Hansen Solubility Parameters and the COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS) simulations. Experiments were performed on rapeseed oil extraction at laboratory and pilot plant scale for the determination of lipid yields, extraction kinetics, diffusion modeling, and complete lipid composition in term of fatty acids and micronutrients (sterols, tocopherols and tocotrienols). Finally, economic and energetic evaluations of the process were conducted to estimate the cost of manufacturing using 2-methyltetrahydrofuran (MeTHF) as alternative solvent compared to hexane as petroleum solvent.


Assuntos
Furanos/química , Extração Líquido-Líquido/economia , Óleos de Plantas/isolamento & purificação , Solventes/química , Ácidos Graxos Monoinsaturados , Química Verde , Hexanos/química , Cinética , Óleo de Brassica napus , Solubilidade
4.
Pest Manag Sci ; 64(2): 203-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18069657

RESUMO

BACKGROUND: In order to understand the bioactivity of Myoporum bontioides A. Gray against plant pathogens and determine its active ingredients, the inhibitory activities of methanol extracts from M. bontioides against Fusarium oxysporum f. sp. niveum (E. F. Smith) Snyder & Hansen, Pestalotia mangiferae P. Henn., Thielaviopsis paradoxa (De Seynes) v. Hohnel, Colletotrichum musae (Berk. & M. A. Curtis) v. Arx, Alternaria alternata (Fr.) Keissler, Mycosphaerella sentina (Fr.) Schroter and Sphaceloma fawcettii Jenk. were evaluated using a growth rate method, and the active ingredient was isolated by activity-directed isolation and identified by determination and analysis of IR, (1)H NMR, (13)C NMR and mass spectra and correlative physical constants. RESULTS: The results showed that the extracts from stems and leaves of M. bontioides exhibited inhibitory activity against the seven fungi, with > 58% inhibition at 10 g L(-1) after 72 h. The active compound was isolated and identified as (-)-epingaione, and showed inhibitory activity against the above seven fungi. The inhibitory activity against P. mangiferae was the highest, with an EC(50) value of 77 mg L(-1). The EC(50) values against the other six fungi were 147-245 mg L(-1). (-)-Epingaione also inhibited spore germination of F. oxysporum f. sp. niveum, T. paradoxa and S. fawcettii. CONCLUSION: (-)-Epingaione demonstrated broad-spectrum inhibitory activity against plant pathogenic fungi and is promising for exploitation as a fungicide.


Assuntos
Fungos/efeitos dos fármacos , Furanos/química , Furanos/farmacologia , Myoporum/química , Pentanonas/química , Pentanonas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA