Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Carbohydr Polym ; 292: 119692, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725180

RESUMO

This research is dedicated to the studies of the microscale morphology of bacterial cellulose (BC) obtained by means of static cultivation of Gluconacetobacter hansenii GH-1/2008. We found that the microscale morphology depended on the BC production rate that was varied by using different glucose concentrations in the cultivation medium. It was revealed that at higher production rates, BC fibrils were aligned in a liquid-crystalline-like (LC-like) order. The observed helical alignment was always left-handed. The half-periods of the helix varied from 50 µm to 150 µm depending on the cultivation conditions. The mechanical and water absorption properties of the obtained BC pellicles were measured. The former correlated mainly with the density of the samples; the latter were the best for films with layered structure, where the BC had segregated into fleece sheets separated by gaps with low density of fibrils.


Assuntos
Gluconacetobacter , Cristais Líquidos , Celulose/química , Fenômenos Químicos , Gluconacetobacter/química , Glucose
2.
Biomacromolecules ; 22(11): 4709-4719, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34705422

RESUMO

Naturally occurring polysaccharides, such as cellulose, hemicellulose, and chitin, have roles in plant skeletons and/or related properties in living organisms. Their hierarchically regulated production systems show potential for designing nanocomposite fabrication using engineered microorganisms. This study has demonstrated that genetically engineered Gluconacetobacter hansenii (G. hansenii) individual cells can fabricate naturally composited nanofibrils by simultaneous production of hyaluronan (HA) and bacterial cellulose (BC). The cells were manipulated to contain hyaluronan synthase and UDP-glucose dehydrogenase genes, which are essential for HA biosynthesis. Fluorescence microscopic observations indicated the production of composited nanofibrils and suggested that HA secretion was associated with the cellulose secretory pathway in G. hansenii. The gel-like nanocomposite materials produced by the engineered G. hansenii exhibited superior properties compared with conventional in situ nanocomposites. This genetic engineering approach facilitates the use of G. hansenii for designing integrated cellulose-based nanomaterials.


Assuntos
Gluconacetobacter , Nanocompostos , Acetobacteraceae , Celulose , Gluconacetobacter/genética , Ácido Hialurônico
3.
Adv Sci (Weinh) ; 8(11): 2004699, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34141524

RESUMO

Bacterial cellulose (BC) has excellent material properties and can be produced sustainably through simple bacterial culture, but BC-producing bacteria lack the extensive genetic toolkits of model organisms such as Escherichia coli (E. coli). Here, a simple approach is reported for producing highly programmable BC materials through incorporation of engineered E. coli. The acetic acid bacterium Gluconacetobacter hansenii is cocultured with engineered E. coli in droplets of glucose-rich media to produce robust cellulose capsules, which are then colonized by the E. coli upon transfer to selective lysogeny broth media. It is shown that the encapsulated E. coli can produce engineered protein nanofibers within the cellulose matrix, yielding hybrid capsules capable of sequestering specific biomolecules from the environment and enzymatic catalysis. Furthermore, capsules are produced which can alter their own bulk physical properties through enzyme-induced biomineralization. This novel system uses a simple fabrication process, based on the autonomous activity of two bacteria, to significantly expand the functionality of BC-based living materials.


Assuntos
Celulose/biossíntese , Escherichia coli/metabolismo , Bioengenharia , Cápsulas , Técnicas de Cocultura , Meios de Cultura , Gluconacetobacter/metabolismo , Nanofibras/química
4.
J Bacteriol ; 203(3)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33199282

RESUMO

Cellulose is a widespread component of bacterial biofilms, where its properties of exceptional water retention, high tensile strength, and stiffness prevent dehydration and mechanical disruption of the biofilm. Bacteria in the genus Gluconacetobacter secrete crystalline cellulose, with a structure very similar to that found in plant cell walls. How this higher-order structure is produced is poorly understood. We used cryo-electron tomography and focused-ion-beam milling of native bacterial biofilms to image cellulose-synthesizing Gluconacetobacter hansenii and Gluconacetobacter xylinus bacteria in a frozen-hydrated, near-native state. We confirm previous results suggesting that cellulose crystallization occurs serially following its secretion along one side of the cell, leading to a cellulose ribbon that can reach several micrometers in length and combine with ribbons from other cells to form a robust biofilm matrix. We were able to take direct measurements in a near-native state of the cellulose sheets. Our results also reveal a novel cytoskeletal structure, which we have named the cortical belt, adjacent to the inner membrane and underlying the sites where cellulose is seen emerging from the cell. We found that this structure is not present in other cellulose-synthesizing bacterial species, Agrobacterium tumefaciens and Escherichia coli 1094, which do not produce organized cellulose ribbons. We therefore propose that the cortical belt holds the cellulose synthase complexes in a line to form higher-order cellulose structures, such as sheets and ribbons.IMPORTANCE This work's relevance for the microbiology community is twofold. It delivers for the first time high-resolution near-native snapshots of Gluconacetobacter spp. (previously Komagataeibacter spp.) in the process of cellulose ribbon synthesis, in their native biofilm environment. It puts forward a noncharacterized cytoskeleton element associated with the side of the cell where the cellulose synthesis occurs. This represents a step forward in the understanding of the cell-guided process of crystalline cellulose synthesis, studied specifically in the Gluconacetobacter genus and still not fully understood. Additionally, our successful attempt to use cryo-focused-ion-beam milling through biofilms to image the cells in their native environment will drive the community to use this tool for the morphological characterization of other studied biofilms.


Assuntos
Celulose/ultraestrutura , Citoesqueleto/ultraestrutura , Gluconacetobacter/metabolismo , Gluconacetobacter/ultraestrutura , Acetobacteraceae/metabolismo , Acetobacteraceae/ultraestrutura , Biofilmes , Celulose/metabolismo , Cristalização , Citoesqueleto/metabolismo , Tomografia com Microscopia Eletrônica , Elétrons , Escherichia coli/metabolismo , Gluconacetobacter xylinus/metabolismo , Gluconacetobacter xylinus/ultraestrutura , Microfibrilas
5.
Carbohydr Polym ; 237: 116140, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32241418

RESUMO

In this paper, we perform a systematic analysis of the structural organization of bacterial cellulose (BC). We report four types of organization of the BC mass, produced by Gluconacetobacter hansenii that occur depending on cultivation conditions. Two of those, particularly, plywood type one and layers of micro-sized tubes were observed and described for the first time. In spherical BC particles (pellets), we found the layered structure that had previously been reported for planar geometry only. We suggest a model explaining why layers form in BC films and attempt to reveal the impact of different factors on the BC microscale morphology. We assume that the main factor that has direct impact on the type of structure formed is the rate of BC mass accumulation.


Assuntos
Celulose/ultraestrutura , Anisotropia , Celulose/metabolismo , Gluconacetobacter/metabolismo , Microscopia Eletrônica de Varredura
6.
Anticancer Res ; 39(8): 4511-4516, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31366553

RESUMO

BACKGROUND/AIM: Gluconacetobacter hansenii (G. hansenii) is an acetic acid bacterium of vinegar production. Its anti-allergic effect on mice upon oral administration was examined. MATERIALS AND METHODS: The amount of LPS was measured by the Limulus reaction. Mice were sensitized by peritoneal and intranasal administration of cedar pollen and alum followed by oral administration of 30 or 150 mg/kg of heated G. hansenii cells. Pollen was administered intranasally to evaluate nasal symptoms, and at 8 weeks, IgE and IL-10 levels in blood were measured by ELISA. RESULTS: The amount of LPS in dried bacterial cells was 10.4±3.3 mg/g. In the cedar pollinosis model of mice, a significant reduction was observed in nose scratching of both groups administered with the bacterial cells (30, 150 mg/kg). CONCLUSION: G. hansenii contains LPS, and its oral administration showed an anti-allergic effect by a significant mitigation of the symptoms in a pollen allergy mouse model.


Assuntos
Antialérgicos/administração & dosagem , Gluconacetobacter/imunologia , Pólen/efeitos adversos , Rinite Alérgica Sazonal/prevenção & controle , Ácido Acético/química , Administração Oral , Alérgenos/efeitos adversos , Animais , Antialérgicos/imunologia , Modelos Animais de Doenças , Humanos , Imunoglobulina E/imunologia , Camundongos , Rinite Alérgica Sazonal/microbiologia , Rinite Alérgica Sazonal/patologia
7.
Bioresour Technol ; 290: 121715, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31295575

RESUMO

Bacterial cellulose (BC) based composites have been widely studied in the biomedical field. In this study, the BC/HA (hyaluronic acid) nanocomposites in the pellicle form were directly produced through co-culturing Gluconacetobacter hansenii ATCC 23769 and Lactococcus lactis APJ3 in a novel two-vessel circulating system. The concentration of HA secreted by L. lactis was controlled through adjusting the constant feed rate of glucose. The dynamic growth of the strains revealed that L. lactis was mainly growing within 48 h while G. hansenii started to grow after 48 h. XRD analysis indicated the presence of HA would not affect the crystallinity of cellulose but increase the crystalline sizes. The FESEM images showed that more ribbons within the width of 20-40 nm and larger ribbons between 180 and 360 nm were observed in BC/HA. The strain at break and the water holding capacity of BC/HA increased with the concentration of HA.


Assuntos
Gluconacetobacter , Lactococcus lactis , Nanocompostos , Celulose , Ácido Hialurônico
8.
Carbohydr Polym ; 219: 12-20, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31151508

RESUMO

Including additives in the culture media during bacterial cellulose (BC) biosynthesis is a traditional method to produce BC-based nanocomposites. This study examines a novel fermentation process, which is to co-culture Gluconacetobacter hansenii (G. hansenii) with Escherichia coli (E. coli) under static conditions, to produce BC pellicles with enhanced mechanical properties. The mannose-rich exopolysaccharides (EPS) synthesized by E. coli were incorporated into the BC network and affected the aggregation of co-crystallized microfibrils without significantly changing the crystal sizes of BC. When co-culturing G. hansenii ATCC 23769 with E. coli ATCC 700728, which produced a low concentration of EPS at 3.3 ± 0.7 mg/L, the BC pellicles exhibited a Young's modulus of 4,874 ± 1144 MPa and a stress at break of 80.7 ± 21.1 MPa, which are 81.9% and 79.3% higher than those of pure BC, respectively. The growth dynamics of the two co-cultured strains suggested that the production of BC and EPS were enhanced through co-culturing fermentation.


Assuntos
Celulose/química , Técnicas de Cocultura/métodos , Escherichia coli/metabolismo , Gluconacetobacter/metabolismo , Nanocompostos/química , Metabolismo dos Carboidratos , Cristalização , Fermentação , Fenômenos Mecânicos , Microfibrilas
9.
Carbohydr Polym ; 207: 684-693, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30600054

RESUMO

Bacterial cellulose (BC) has been gaining importance over the past decades as a versatile material that finds applications in diverse industries. However, a secured supply is hindered by the slow production rate and batch-to-batch variability of the yield. Here, we report a rational approach for characterising the BC production process using Design of Experiment (DoE) methodology to study the impact of different parameters on desired process attributes. Notably, we found that the carbon source used for bacterial growth significantly impacts the interplay between the process variables and affects the desired outcomes. We therefore, propose that the highest priority process outcome in this study, the yield, is a function of the carbon source and optimal reactor design. Our systematic approach has achieved projected BC yields as high as ∼40 g/L for Gluconacetobacter hansenii 53582 grown on sucrose as the carbon source compared to the widely reported yields of ∼10 g/L.


Assuntos
Celulose/biossíntese , Acetobacteraceae/química , Acetobacteraceae/metabolismo , Celulose/química , Meios de Cultura , Fermentação , Gluconacetobacter/química , Gluconacetobacter/metabolismo , Glucose/metabolismo , Sacarose/metabolismo
10.
Int J Biol Macromol ; 121: 580-587, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30336235

RESUMO

The aim of this work was to test the use of plant-based natural dyes on bacterial cellulose (BC) to add aesthetic value to dyed pellicles while maintaining the mechanical properties. Natural pigments from Clitoria ternatea L. and Hibiscus rosa-sinensis were tested. The commercial ARAQCEL RL 500 was also used for comparison purposes. The behavior of biocellulose regarding dye fixation, rehydration, tensile strength, and elasticity was evaluated in comparison to the dried biomaterial, showing that dyeing is a process that can be performed on hydrated BC. Dyeing the BC films through an innovative process maintained the crystallinity, thermal stability and mechanical strength of the BC and confirmed the compatibility of the membrane with the dyes tested, from the observed Scanning Electron Microscopy (SEM) morphology of nanofibers. Dyed biomaterial can be applied to various products, as confirmed by the results of the mechanical tests. As environmental awareness and public concern regarding pollution increase, the combination of natural dyes and BC pellicles can produce an attractive new material for the textile industry.


Assuntos
Celulose/química , Fabaceae/química , Gluconacetobacter/química , Hibiscus/química , Pigmentos Biológicos/química , Resistência à Tração
11.
Enzyme Microb Technol ; 119: 24-29, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30243383

RESUMO

The Gram-negative bacterium, Gluconacetobacter hansenii, has been long studied and is a model for cellulose synthesis. It produces cellulose, using the enzyme AcsA-AcsB, of exceptionally high crystallinity in comparison to the cellulose of higher plants. We determined the rate of cellulose synthesis in whole cells measured as moles of glucose incorporated into cellulose per second per mole of enzyme. This was determined by quantifying the rate of cellulose synthesis (over a short time span, such that the enzyme concentration is not changing due to cell growth) and the amount of enzyme in the whole cell by quantitative western blotting. We found that the whole cell rate of 24 s-1 is much faster than the kcat, measured from steady-state kinetic analysis, of 1.7 s-1. Our whole cell rates are consistent with previous studies using microscopy. We postulate that the rationale for this difference is the presence of an alternative in vivo priming mechanism. This in turn can increase the rate of initiation, which we previously postulated to be the rate-limiting step in catalysis.


Assuntos
Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Gluconacetobacter/enzimologia , Glucosiltransferases/isolamento & purificação , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Cinética
12.
J Appl Microbiol ; 125(3): 777-791, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29762885

RESUMO

AIMS: Obtain varieties of Gluconacetobacter hansenii from original strain ATCC 23729 with greater efficiency to produce bacterial cellulose (BC) membrane with better dry mass yield for application as support of sustained antimicrobials' drug release. METHODS AND RESULTS: Application of different chemical and physical conditions (pH, temperature and UV light exposure) to obtain different G. hansenii varieties with high capacity to produce BC membranes. Characterization of the G. hansenii variants was performed by scanning electron microscopy (SEM) and optical microscopy of the colony-forming units. BC membrane produced was characterized by SEM, infrared spectroscopy and X-ray diffraction. The BC produced by variants isolated after incubation at 35°C showed elevated dry mass yield and high capacity of retention and sustained release of ceftriaxone antibiotic with the produced BC by original G. hansenii ATCC 23769 strain subjected to incubation at 28°C and with commercial BC. CONCLUSION: The application of different chemical and physical conditions constitutes an important method to obtain varieties of micro-organisms with dissimilar metabolism advantageous in relation to the original strain in the BC production. SIGNIFICANCE AND IMPACT OF THE STUDY: These results demonstrate the importance of in vivo studies for the application, in medicine, of BC membranes as support for antimicrobial-sustained release for the skin wound treatment.


Assuntos
Anti-Infecciosos/farmacocinética , Celulose , Preparações de Ação Retardada/química , Gluconacetobacter , Ceftriaxona/farmacocinética , Celulose/química , Celulose/metabolismo , Celulose/ultraestrutura , Gluconacetobacter/química , Gluconacetobacter/metabolismo , Microscopia Eletrônica de Varredura , Difração de Raios X
13.
Bioprocess Biosyst Eng ; 41(2): 265-279, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29177720

RESUMO

Bacterial cellulose (BC) exhibits unique properties such as high purity compared to plant-based cellulose; however, commercial production of BC has remained a challenge, primarily due to the strain properties of cellulose-producing bacteria. Herein, we developed a functional and stable BC production system in genetically modified (GM) Escherichia coli by recombinant expression of both the BC synthase operon (bcsABCD) and the upstream operon (cmcax, ccp Ax). BC production was achieved in GM HMS174 (DE3) and in GM C41 (DE3) by optimization of the culture temperature (22 °C, 30 °C, and 37 °C) and IPTG concentration. BC biosynthesis was detected much earlier in GM C41 (DE3) cultures (3 h after IPTG induction) than those of Gluconacetobacter hansenii. GM HMS174 (DE3) produced dense fibres having a length of approximately 1000-3000 µm and a diameter of 10-20 µm, which were remarkably larger than the fibres of BC typically produced by G. hansenii.


Assuntos
Celulose/biossíntese , Escherichia coli , Gluconacetobacter/genética , Microrganismos Geneticamente Modificados , Óperon , Celulose/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Gluconacetobacter/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo
14.
Int J Biol Macromol ; 97: 642-653, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28109811

RESUMO

The bacterial cellulose (BC), from Gluconacetobacter hansenii, is a biofilm with a high degree of crystallinity that can be used for therapeutic purposes and as a candidate for healing wounds. Hyaluronic acid (HA) is a constitutive polysaccharide found in the extracellular matrix and is a material used in tissue engineering and scaffolding for tissue regeneration. In this study, polymeric composites were produced in presence of hyaluronic acid isolated from chicken comb on different days of fermentation, specifically on the first (BCHA-SABT0) and third day (BCHA-SABT3) of fermentation. The structural characteristics, thermal stability and molar mass of hyaluronic acid from chicken comb were evaluated. Native membrane and polymeric composites were characterized with respect to their morphology and crystallinity. The optimized process of extraction and purification of hyaluronic acid resulted in low molar mass hyaluronic acid with structural characteristics similar to the standard commercial hyaluronic acid. The results demonstrate that the polymeric composites (BC/HA-SAB) can be produced in situ. The membranes produced on the third day presented better incorporation of HA-SAB between cellulose microfiber, resulting in membranes with higher thermal stability, higher roughness and lower crystallinity. The biocompatiblily of bacterial cellulose and the importance of hyaluronic acid as a component of extracellular matrix qualify the polymeric composites as promising biomaterials for tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Galinhas , Gluconacetobacter/química , Ácido Hialurônico/química , Resíduos Industriais , Membranas Artificiais , Animais , Estabilidade de Medicamentos , Peso Molecular , Propriedades de Superfície , Temperatura
15.
Environ Sci Pollut Res Int ; 24(12): 11154-11162, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27312900

RESUMO

Bacterial cellulose (BC) is a homopolymer and it is distinguished from plant-based cellulose by its unique properties such as high purity, high crystallinity, high water-holding capacity, and good biocompatibility. Microalgae are unicellular, photosynthetic microorganisms and are known to have high protein, starch, and oil content. In this study, Chlorella vulgaris was evaluated as source of glucose for the production of BC. To increase the starch content of algae the effect of nutrient starvation (nitrogen and sulfur) and light deficiency were tested in a batch assay. The starch contents (%) were 5.27 ± 0.04, 7.14 ± 0.18, 5.00 ± 0.08, and 1.35 ± 0.04 for normal cultivation, nitrogen starvation, sulfur starvation, and dark cultivation conditions, respectively. The performance of enzymatic and acidic methods was compared for the starch hydrolysis. This study demonstrated for the first time that acid hydrolysate of algal starch can be used to substitute glucose in the fermentation medium of Komagataeibacter hansenii for BC production. Glucose was used as a control for BC production. BC production yields on dry weight basis were 1.104 ± 0.002 g/L and 1.202 ± 0.005 g/L from algae-based glucose and glucose, respectively. The characterization of both BCs produced from glucose and algae-based glucose was investigated by scanning electron microscopy and Fourier transform infrared spectroscopy. The results have shown that the structural characteristics of algae-based BC were comparable to those of glucose-based BC.


Assuntos
Celulose/biossíntese , Chlorella vulgaris/química , Gluconacetobacter/metabolismo , Glucose/química , Meios de Cultura/química
16.
Appl Microbiol Biotechnol ; 101(3): 1003-1012, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27678116

RESUMO

Isolate B17 from Kombucha was estimated to be an efficient producer of bacterial cellulose (BC). The isolate was deposited under the number P 1463 and identified as Komagataeibacter rhaeticus by comparing a generated amplified fragment length polymorphism (AFLP™) DNA fingerprint against a reference database. Static cultivation of the K. rhaeticus strain P 1463 in Hestrin and Schramm (HS) medium resulted in 4.40 ± 0.22 g/L BC being produced, corresponding to a BC yield from glucose of 25.30 ± 1.78 %, when the inoculum was made with a modified HS medium containing 10 g/L glucose. Fermentations for 5 days using media containing apple juice with analogous carbon source concentrations resulted in 4.77 ± 0.24 g/L BC being synthesised, corresponding to a yield from the consumed sugars (glucose, fructose and sucrose) of 37.00 ± 2.61 %. The capacity of K. rhaeticus strain P 1463 to synthesise BC was found to be much higher than that of two reference strains for cellulose production, Komagataeibacter xylinus DSM 46604 and Komagataeibacter hansenii DSM 5602T, and was also considerably higher than that of K. hansenii strain B22, isolated from another Kombucha sample. The BC synthesised by K. rhaeticus strain P 1463 after 40 days of cultivation in HS medium with additional glucose supplemented to the cell culture during cultivation was shown to have a degree of polymerization of 3300.0 ± 122.1 glucose units, a tensile strength of 65.50 ± 3.27 MPa and a length at break of 16.50 ± 0.83 km. For the other strains, these properties did not exceed 25.60 ± 1.28 MPa and 15.20 ± 0.76 km.


Assuntos
Celulose/biossíntese , Fermentação , Gluconacetobacter/metabolismo , Chá de Kombucha/microbiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Carbono/metabolismo , Celulose/metabolismo , Meios de Cultura/química , Gluconacetobacter/classificação , Gluconacetobacter/crescimento & desenvolvimento , Gluconacetobacter/isolamento & purificação , Glucose/metabolismo
17.
PLoS One ; 11(5): e0155886, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27214134

RESUMO

Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into ß-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the hypothesis that it is the extrusion mechanism and order in linearly arrayed TCs that enables production of crystalline cellulose.


Assuntos
Gluconacetobacter/enzimologia , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Membrana Celular/metabolismo , Celulose/biossíntese , Cristalografia por Raios X , Tomografia com Microscopia Eletrônica , Gluconacetobacter/química , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Conformação Proteica
18.
Sci Rep ; 6: 23635, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27010592

RESUMO

Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.


Assuntos
Celulose/biossíntese , Genoma Bacteriano , Gluconacetobacter/metabolismo , Modelos Biológicos , Plasmídeos , Gluconacetobacter/classificação , Gluconacetobacter/genética , Filogenia , Transformação Bacteriana
19.
Colloids Surf B Biointerfaces ; 140: 421-429, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26784658

RESUMO

Bacterial cellulose (BC) films modified by the in situ method with the addition of alginate (Alg) during the microbial cultivation of Gluconacetobacter hansenii under static conditions increased the loading of doxorubicin by at least three times. Biophysical analysis of BC-Alg films by scanning electron microscopy, thermogravimetry, X-ray diffraction and FTIR showed a highly homogeneous interpenetrated network scaffold without changes in the BC crystalline structure but with an increased amorphous phase. The main molecular interactions determined by FTIR between both biopolymers clearly suggest high compatibility. These results indicate that alginate plays a key role in the biophysical properties of the hybrid BC matrix. BC-Alg scaffold analysis by nitrogen adsorption isotherms revealed by the Brunauer-Emmett-Teller (BET) method an increase in surface area of about 84% and in pore volume of more than 200%. The Barrett-Joyner-Halenda (BJH) model also showed an increase of about 25% in the pore size compared to the BC film. Loading BC-Alg scaffolds with different amounts of doxorubicin decreased the cell viability of HT-29 human colorectal adenocarcinoma cell line compared to the free Dox from around 95-53% after 24h and from 63% to 37% after 48 h. Dox kinetic release from the BC-Alg nanocomposite displayed hyperbolic curves related to the different amounts of drug payload and was stable for at least 14 days. The results of the BC-Alg nanocomposites show a promissory potential for anticancer therapies of solid tumors.


Assuntos
Alginatos/química , Celulose/química , Doxorrubicina/farmacologia , Gluconacetobacter/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Celulose/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Ácido Glucurônico/química , Células HT29 , Ácidos Hexurônicos/química , Humanos , Microscopia Eletrônica de Varredura , Nanocompostos/química , Nanocompostos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Alicerces Teciduais/química , Difração de Raios X
20.
Enzyme Microb Technol ; 82: 58-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26672449

RESUMO

The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx.


Assuntos
Proteínas de Bactérias/química , Gluconacetobacter/enzimologia , Glucosiltransferases/química , Complexos Multienzimáticos/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Celulose/biossíntese , Centrifugação , Clonagem Molecular , Dimerização , Genes Bacterianos , Gluconacetobacter/genética , Glucosiltransferases/genética , Glucosiltransferases/isolamento & purificação , Glucosiltransferases/metabolismo , Cinética , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/isolamento & purificação , Complexos Multienzimáticos/metabolismo , Mutagênese Insercional , Subunidades Proteicas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA