Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
mBio ; 6(6): e01313-15, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578674

RESUMO

UNLABELLED: Mycobacterium haemophilum is an emerging pathogen associated with a variety of clinical syndromes, most commonly skin infections in immunocompromised individuals. M. haemophilum exhibits a unique requirement for iron supplementation to support its growth in culture, but the basis for this property and how it may shape pathogenesis is unclear. Using a combination of Illumina, PacBio, and Sanger sequencing, the complete genome sequence of M. haemophilum was determined. Guided by this sequence, experiments were performed to define the basis for the unique growth requirements of M. haemophilum. We found that M. haemophilum, unlike many other mycobacteria, is unable to synthesize iron-binding siderophores known as mycobactins or to utilize ferri-mycobactins to support growth. These differences correlate with the absence of genes associated with mycobactin synthesis, secretion, and uptake. In agreement with the ability of heme to promote growth, we identified genes encoding heme uptake machinery. Consistent with its propensity to infect the skin, we show at the whole-genome level the genetic closeness of M. haemophilum with Mycobacterium leprae, an organism which cannot be cultivated in vitro, and we identify genes uniquely shared by these organisms. Finally, we identify means to express foreign genes in M. haemophilum. These data explain the unique culture requirements for this important pathogen, provide a foundation upon which the genome sequence can be exploited to improve diagnostics and therapeutics, and suggest use of M. haemophilum as a tool to elucidate functions of genes shared with M. leprae. IMPORTANCE: Mycobacterium haemophilum is an emerging pathogen with an unknown natural reservoir that exhibits unique requirements for iron supplementation to grow in vitro. Understanding the basis for this iron requirement is important because it is fundamental to isolation of the organism from clinical samples and environmental sources. Defining the molecular basis for M. haemophilium's growth requirements will also shed new light on mycobacterial strategies to acquire iron and can be exploited to define how differences in such strategies influence pathogenesis. Here, through a combination of sequencing and experimental approaches, we explain the basis for the iron requirement. We further demonstrate the genetic closeness of M. haemophilum and Mycobacterium leprae, the causative agent of leprosy which cannot be cultured in vitro, and we demonstrate methods to genetically manipulate M. haemophilum. These findings pave the way for the use of M. haemophilum as a model to elucidate functions of genes shared with M. leprae.


Assuntos
Meios de Cultura/química , Genoma Bacteriano , Mycobacterium haemophilum/crescimento & desenvolvimento , Mycobacterium haemophilum/genética , Sequência de Bases , Heme/genética , Heme/metabolismo , Hemoglobinas/metabolismo , Humanos , Ferro/metabolismo , Mycobacterium leprae/genética , Oxazóis/metabolismo , Fenótipo , Análise de Sequência de DNA
2.
Antimicrob Agents Chemother ; 56(1): 391-402, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22037849

RESUMO

CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin "open" conformation of the enzyme (K(d) [dissociation constant] of 0.1 µM), with binding to the low-spin "closed" form being significantly hindered (K(d) of 338 µM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy.


Assuntos
Antifúngicos/metabolismo , Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Econazol/metabolismo , Hanseníase/tratamento farmacológico , Mycobacterium leprae , Antifúngicos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Econazol/farmacologia , Heme/metabolismo , Histidina/metabolismo , Humanos , Ferro/metabolismo , Cinética , Hanseníase/microbiologia , Modelos Moleculares , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium leprae/efeitos dos fármacos , Mycobacterium leprae/enzimologia , Mycobacterium smegmatis/química , Mycobacterium smegmatis/enzimologia , Porfirinas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína
3.
Biochem Biophys Res Commun ; 339(1): 450-6, 2006 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-16307730

RESUMO

Ferrous oxygenated (Fe(II)O2) hemoglobins (Hb's) and myoglobins (Mb's) have been shown to react very rapidly with NO, yielding NO3(-) and the ferric heme-protein derivative (Fe(III)), by means of the ferric heme-bound peroxynitrite intermediate (Fe(III)OONO), according to the minimum reaction scheme: Fe(II)O2 + NO (k(on))--> Fe(III)OONO (h)--> Fe(III) + NO3(-). For most Hb's and Mb's, the first step (indicated by k(on)) is rate limiting, the overall reaction following a bimolecular behavior. By contrast, the rate of isomerization and dissociation of Fe(III)OONO (indicated by h) is rate limiting in NO scavenging by Fe(II)O2 murine neuroglobin, thus the overall reaction follows a monomolecular behavior. Here, we report the characterization of the NO scavenging reaction by Fe(II)O2 truncated Hb GlbO from Mycobacterium leprae. Values of k(on) (=2.1x10(6) M(-1) s(-1)) and h (=3.4 s(-1)) for NO scavenging by Fe(II)O2 M. leprae GlbO have been determined at pH 7.3 and 20.0 degrees C, the rate of Fe(III)OONO decay (h) is rate limiting. The Fe(III)OONO intermediate has been characterized by optical absorption spectroscopy in the Soret region. These results have been analyzed in parallel with those of monomeric and tetrameric globins as well as of flavoHb and discussed with regard to the three-dimensional structure of mycobacterial truncated Hbs and their proposed role in protection from nitrosative stress.


Assuntos
Proteínas de Bactérias/metabolismo , Compostos Férricos/metabolismo , Heme/metabolismo , Hemoglobinas/metabolismo , Mycobacterium leprae/metabolismo , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/metabolismo , Oxirredução , Proteínas Recombinantes/metabolismo , Hemoglobinas Truncadas
4.
Infect Immun ; 68(7): 4092-101, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10858226

RESUMO

Haemophilus influenzae can utilize different protein-bound forms of heme for growth in vitro. A previous study (I. Maciver, J. L. Latimer, H. H. Liem, U. Muller-Eberhard, Z. Hrkal, and E. J. Hansen. Infect. Immun. 64:3703-3712, 1996) indicated that nontypeable H. influenzae (NTHI) strain TN106 expressed a protein that bound hemoglobin-haptoglobin and was encoded by an open reading frame (ORF) that contained a CCAA nucleotide repeat. Southern blot analysis revealed that several NTHI strains contained between three and five chromosomal DNA fragments that bound an oligonucleotide probe for CCAA repeats. Three ORFs containing CCAA repeats were identified in NTHI strain N182; two of these ORFs were arranged in tandem. The use of translational fusions involving these three ORFs and the beta-lactamase gene from pBR322 revealed that these three ORFs, designated hgbA, hgbB, and hgbC, encoded proteins that could bind hemoglobin, hemoglobin-haptoglobin, or both compounds. Monoclonal antibodies (MAbs) specific for the HgbA, HgbB, and HgbC proteins were produced by immunizing mice with synthetic peptides unique to each protein. Both HgbA and HgbB were readily detected by Western blot analysis in N182 cells grown in the presence of hemoglobin as the sole source of heme, whereas expression of HgbC was found to be much less abundant than that of HgbA and HgbB. The use of these MAbs in a colony blot radioimmunoassay analysis revealed that expression of both HgbA and HgbB was subject to phase variation. PCR and nucleotide sequence analysis were used in conjunction with Western blot analyses to demonstrate that this phase variation involved the CCAA repeats in the hgbA and hgbB ORFs.


Assuntos
Proteínas de Bactérias/metabolismo , Haemophilus influenzae/metabolismo , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Primers do DNA/genética , DNA Bacteriano/genética , Escherichia coli/genética , Expressão Gênica , Genes Bacterianos , Haemophilus influenzae/genética , Haemophilus influenzae/crescimento & desenvolvimento , Heme/metabolismo , Humanos , Ferro/metabolismo , Camundongos , Repetições de Microssatélites , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos
5.
Infect Immun ; 66(9): 4511-6, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9712810

RESUMO

Utilization of heme-hemopexin as a source of heme by Haemophilus influenzae type b is dependent on expression by this bacterium of the 100-kDa HxuA protein, which is both present on the bacterial cell surface and released into the culture supernatant (L. D. Cope, R. Yogev, U. Muller-Eberhard, and E. J. Hansen, J. Bacteriol. 177:2644-2653, 1995). Radioimmunoprecipitation analysis showed that the soluble HxuA protein present in H. influenzae type b culture supernatant bound heme-hemopexin complexes in solution. An isogenic H. influenzae type b hxuA mutant was unable to utilize soluble heme-hemopexin complexes for growth in vitro unless soluble HxuA protein was provided exogenously. Soluble HxuA protein secreted by a nontypeable H. influenzae strain also allowed growth of this H. influenzae type b hxuA mutant. These results indicated that the heme present in heme-hemopexin complexes is rendered accessible to H. influenzae when these complexes are bound by the soluble HxuA protein.


Assuntos
Haemophilus influenzae/metabolismo , Heme/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Meios de Cultura , Haemophilus influenzae/crescimento & desenvolvimento , Ratos , Solubilidade
6.
J Bacteriol ; 177(10): 2644-53, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-7751272

RESUMO

The utilization of heme bound to the serum glycoprotein hemopexin by Haemophilus influenzae type b (Hib) strain DL42 requires the presence of the 100-kDa heme:hemopexin-binding protein encoded by the hxuA gene (M. S. Hanson, S. E. Pelzel, J. Latimer, U. Muller-Eberhard, and E. J. Hansen, Proc. Natl. Acad. Sci. USA 89:1973-1977, 1992). Nucleotide sequence analysis of a 5-kb region immediately upstream from the hxuA gene revealed the presence of two genes, designated hxuC and hxuB, which encoded outer membrane proteins. The 78-kDa HxuC protein had similarity to TonB-dependent outer membrane proteins of other organisms, whereas the 60-kDa HxuB molecule most closely resembled the ShlB protein of Serratia marcescens. A set of three isogenic Hib mutants with cat cartridges inserted individually into their hxuA, hxuB, and hxuC genes was constructed. None of these mutants could utilize heme:hemopexin. The hxuC mutant was also unable to utilize low levels of free heme, whereas both the hxuA and hxuB mutants could utilize free heme. When the wild-type hxuC gene was present in trans, the hxuC mutant regained its ability to utilize low levels of free heme but still could not utilize heme:hemopexin. The hxuA mutant could utilize heme:hemopexin when a functional hxuA gene from a nontypeable H. influenzae strain was present in trans. Complementation analysis using this cloned nontypeable H. influenzae hxuA gene also indicated that the HxuB protein likely functions in the release of soluble HxuA from the Hib cell. These studies indicate that at least two and possible three gene products are required for utilization of heme bound to hemopexin by Hib strain DL42.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Genes Bacterianos/genética , Haemophilus influenzae/genética , Heme/metabolismo , Hemopexina/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Transporte Biológico , Haemophilus influenzae/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular , Família Multigênica/genética , Mutagênese Insercional , Fases de Leitura Aberta/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Mapeamento por Restrição , Análise de Sequência , Homologia de Sequência de Aminoácidos
7.
Infect Immun ; 62(1): 48-59, 1994 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8262649

RESUMO

Heme can serve Haemophilus influenzae as a source of both essential porphyrin and iron. In extracellular mammalian body fluids neither free heme nor free iron is available, since they are tightly bound to hemopexin and transferrin, respectively. Since H. influenzae grows in the presence of iron-transferrin and heme-hemopexin and is known to express a saturable receptor for transferrin, we investigated the process by which this pathogen acquired heme from hemopexin for use as an iron source. The ability of human and rabbit hemopexin to donate heme as a source of iron to H. influenzae type b strains was demonstrated by plate bioassays. With a dot enzyme assay with biotinylated hemopexin as ligand, H. influenzae bound heme-hemopexin and apo-hemopexin following growth in iron-restricted, but not in iron-sufficient, medium. Competitive binding studies with heme-hemopexin and apo-hemopexin demonstrated saturability of binding. Neither heme, protoporphyrin IX, hemoglobin, nor transferrin blocked the binding of hemopexin to whole cells, demonstrating the specificity of binding. Treatment of whole H. influenzae cells with trypsin abolished binding. Taken together, these observations suggest that H. influenzae type b expresses an outer membrane protein(s) which acts as a receptor for hemopexin and which is regulated by the availability of iron in the growth medium. In iron-restricted media, H. influenzae 706705 and DL42 did not express the 100-kDa hemopexin-binding protein previously reported (M.S. Hanson, S.E. Pelzel, J. Latimer, U. Muller-Eberhard, and E.J. Hansen, Proc. Natl. Acad. Sci. USA 89:1973-1977, 1992). The putative iron-regulated hemopexin receptor was solubilized from cell envelopes of H. influenzae 706705, DL42, and Eagan with the detergent CHAPS (3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate) and isolated by affinity chromatography on heme-hemopexin-Sepharose 4B. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the proteins bound to the affinity resin revealed three proteins of 29, 38, and 57 kDa, of which the 57- and 29-kDa proteins bound hemopexin after Western blotting (immunoblotting). A monoclonal antibody to the 57-kDa hemopexin-binding protein of 706705 recognized a 57-kDa protein on Western blots of the cell envelope proteins of 706705, DL42, and Eagan; no reaction was observed with the 100-kDa hemopexin-binding protein of DL42. These data suggest that some H. influenzae strains possess at least two hemopexin receptors, the expression of which is determined by the prevailing growth environment.


Assuntos
Haemophilus influenzae/metabolismo , Hemopexina/metabolismo , Receptores de Peptídeos/metabolismo , Aerobiose , Anticorpos Monoclonais/imunologia , Apoproteínas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Heme/metabolismo , Ferro/metabolismo , Peso Molecular , Protoporfirinas/metabolismo , Receptores de Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA