Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Model ; 18(6): 2659-72, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22102165

RESUMO

Multi drug resistance capacity for Mycobacterium leprae (MDR-Mle) demands the profound need for developing new anti-leprosy drugs. Since most of the drugs target a single enzyme, mutation in the active site renders the antibiotic ineffective. However, structural and mechanistic information on essential bacterial enzymes in a pathway could lead to the development of antibiotics that targets multiple enzymes. Peptidoglycan is an important component of the cell wall of M. leprae. The biosynthesis of bacterial peptidoglycan represents important targets for the development of new antibacterial drugs. Biosynthesis of peptidoglycan is a multi-step process that involves four key Mur ligase enzymes: MurC (EC:6.3.2.8), MurD (EC:6.3.2.9), MurE (EC:6.3.2.13) and MurF (EC:6.3.2.10). Hence in our work, we modeled the three-dimensional structure of the above Mur ligases using homology modeling method and analyzed its common binding features. The residues playing an important role in the catalytic activity of each of the Mur enzymes were predicted by docking these Mur ligases with their substrates and ATP. The conserved sequence motifs significant for ATP binding were predicted as the probable residues for structure based drug designing. Overall, the study was successful in listing significant and common binding residues of Mur enzymes in peptidoglycan pathway for multi targeted therapy.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Hanseníase/microbiologia , Mycobacterium leprae/enzimologia , Peptídeo Sintases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Desenho de Fármacos , Ácido Glutâmico/química , Glicina/química , Histidina/química , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína , Termodinâmica
2.
Protein Expr Purif ; 53(1): 16-23, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17223360

RESUMO

The full-length human acetyl-CoA carboxylase 1 (ACC1) was expressed and purified to homogeneity by two separate groups (Y.G. Gu, M. Weitzberg, R.F. Clark, X. Xu, Q. Li, T. Zhang, T.M. Hansen, G. Liu, Z. Xin, X. Wang, T. McNally, H. Camp, B.A. Beutel, H.I. Sham, Synthesis and structure-activity relationships of N-{3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1-methylprop-2-ynyl}carboxy derivatives as selective acetyl-CoA carboxylase 2 inhibitors, J. Med. Chem. 49 (2006) 3770-3773; D. Cheng, C.H. Chu, L. Chen, J.N. Feder, G.A. Mintier, Y. Wu, J.W. Cook, M.R. Harpel, G.A. Locke, Y. An, J.K. Tamura, Expression, purification, and characterization of human and rat acetyl coenzyme A carboxylase (ACC) isozymes, Protein Expr. Purif., in press). However, neither group was successful in expressing the full-length ACC2 due to issues of solubility and expression levels. The two versions of recombinant human ACC2 in these reports are either truncated (lacking 1-148 aa) or have the N-terminal 275 aa replaced with the corresponding ACC1 region (1-133 aa). Despite the fact that ACC activity was observed in both cases, these constructs are not ideal because the N-terminal region of ACC2 could be important for the correct folding of the catalytic domains. Here, we report the high level expression and purification of full-length human ACC2 that lacks only the N-terminal membrane attachment sequence (1-20 and 1-26 aa, respectively) in Trichoplusia ni cells. In addition, we developed a sensitive HPLC assay to analyze the kinetic parameters of the recombinant enzyme. The recombinant enzyme is a soluble protein and has a K(m) value of 2 microM for acetyl-CoA, almost 30-fold lower than that reported for the truncated human ACC2. Our recombinant enzyme also has a lower K(m) value for ATP (K(m)=52 microM). Although this difference could be ascribed to different assay conditions, our data suggest that the longer human ACC2 produced in our system may have higher affinities for the substrates and could be more similar to the native enzyme.


Assuntos
Acetil-CoA Carboxilase/isolamento & purificação , Acetil-CoA Carboxilase/metabolismo , Expressão Gênica , Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/genética , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Furanos/farmacologia , Histidina/química , Humanos , Concentração Inibidora 50 , Cinética , Dados de Sequência Molecular , Peso Molecular , Ácidos Palmíticos/farmacologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Solubilidade , Spodoptera/citologia , Spodoptera/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA