Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int Rev Immunol ; 41(2): 72-83, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33241709

RESUMO

Leprosy is a disease caused by Mycobacterium leprae (ML) with diverse clinical manifestations, which are strongly correlated with the host's immune response. Skin lesions may be accompanied by peripheral neural damage, leading to sensory and motor losses, as well as deformities of the hands and feet. Both innate and acquired immune responses are involved, but the disease has been classically described along a Th1/Th2 spectrum, where the Th1 pole corresponds to the most limited presentations and the Th2 to the most disseminated ones. We discuss this dichotomy in the light of current knowledge of cytokines, Th subpopulations and regulatory T cells taking part in each leprosy presentation. Leprosy reactions are associated with an increase in inflammatory activity both in limited and disseminated presentations, leading to a worsening of previous symptoms or the development of new symptoms. Despite the efforts of many research groups around the world, there is still no adequate serological test for diagnosis in endemic areas, hindering the eradication of leprosy in these regions.


Assuntos
Hanseníase , Imunidade Adaptativa , Citocinas , Humanos , Hanseníase/diagnóstico , Hanseníase/patologia , Mycobacterium leprae/fisiologia , Linfócitos T Reguladores
2.
Bull Exp Biol Med ; 169(6): 836-839, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33098510

RESUMO

Leprosy was modeled in an experiment on BALB/c, BALB/cNude, CBA, and C57BL/6ТNF-/- mice using three Mycobacterium leprae strains obtained from patients with a diagnosis of A30 according to ICD-10 from different regions of the Russian Federation. Proliferation of M. leprae of the used strains showed a temporal-quantitative dependence on the used mouse line. CBA and BALB/cNude mice were optimal for strain R and BALB/c and BALB/cNude lines were optimal for strain I. BALB/cNude mice infected with strain I had low lifespan. M. leprae strain M showed low proliferation activity in BALB/cNude and C57BL/6ТNF-/- mice.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Hanseníase/imunologia , Longevidade/imunologia , Mycobacterium leprae/patogenicidade , Fator de Necrose Tumoral alfa/imunologia , Animais , DNA Bacteriano/genética , Modelos Animais de Doenças , Especificidade de Hospedeiro , Humanos , Hanseníase/genética , Hanseníase/microbiologia , Hanseníase/patologia , Longevidade/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Nus , Mycobacterium leprae/genética , Mycobacterium leprae/crescimento & desenvolvimento , Mycobacterium leprae/imunologia , Fator de Necrose Tumoral alfa/deficiência , Fator de Necrose Tumoral alfa/genética
3.
Front Immunol ; 10: 1125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231361

RESUMO

Free-ranging Atlantic bottlenose dolphins (n = 360) from two southeastern U.S. estuarine sites were given comprehensive health examinations between 2003 and 2015 as part of a multi-disciplinary research project focused on individual and population health. The study sites (and sample sizes) included the Indian River Lagoon (IRL), Florida, USA (n = 246) and Charleston harbor and associated rivers (CHS), South Carolina, USA (n = 114). Results of a suite of clinicoimmunopathologic tests revealed that both populations have a high prevalence of infectious and neoplastic disease and a variety of abnormalities of their innate and adaptive immune systems. Subclinical infections with cetacean morbillivirus and Chlamydiaceae were detected serologically. Clinical evidence of orogenital papillomatosis was supported by the detection of a new strain of dolphin papillomavirus and herpesvirus by molecular pathology. Dolphins with cutaneous lobomycosis/lacaziasis were subsequently shown to be infected with a novel, uncultivated strain of Paracoccidioides brasiliensis, now established as the etiologic agent of this enigmatic disease in dolphins. In this review, innate and adaptive immunologic responses are compared between healthy dolphins and those with clinical and/or immunopathologic evidence of infection with these specific viral, bacterial, and fungal pathogens. A wide range of immunologic host responses was associated with each pathogen, reflecting the dynamic and complex interplay between the innate, humoral, and cell-mediated immune systems in the dolphin. Collectively, these studies document the comparative innate and adaptive immune responses to various types of infectious diseases in free-ranging Atlantic bottlenose dolphins. Evaluation of the type, pattern, and degree of immunologic response to these pathogens provides novel insight on disease immunopathogenesis in this species and as a comparative model. Importantly, the data suggest that in some cases infection may be associated with subclinical immunopathologic perturbations that could impact overall individual and population health.


Assuntos
Golfinho Nariz-de-Garrafa/imunologia , Infecções por Chlamydiaceae/veterinária , Lobomicose/veterinária , Infecções por Morbillivirus/veterinária , Paracoccidioidomicose/veterinária , Imunidade Adaptativa , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antifúngicos/sangue , Anticorpos Antivirais/sangue , Oceano Atlântico , Golfinho Nariz-de-Garrafa/sangue , Golfinho Nariz-de-Garrafa/microbiologia , Golfinho Nariz-de-Garrafa/virologia , Infecções por Chlamydiaceae/epidemiologia , Infecções por Chlamydiaceae/imunologia , Coinfecção/veterinária , Doenças Transmissíveis Emergentes/veterinária , Estuários , Imunidade Inata , Lobomicose/epidemiologia , Lobomicose/imunologia , Infecções por Morbillivirus/epidemiologia , Infecções por Morbillivirus/imunologia , Paracoccidioidomicose/epidemiologia , Paracoccidioidomicose/imunologia , South Carolina
4.
Microb Pathog ; 125: 230-239, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30195647

RESUMO

The aim of this study was to identify phenotypic and functional biomarkers associated with distinct clinical status of leprosy or leprosy reactions. The study included tuberculoid/borderline (BB/BT/T) and lepromatous (BL/L) leprosy poles as well as Type-1 and Type-2 leprosy reactions along with healthy controls (NI). A range of peripheral blood biomarkers of innate (neutrophils - NEU and monocytes - MON) and adaptive immunity (CD4+ and CD8+ T-cells) were evaluated ex vivo and upon in vitro stimuli with M. leprae antigen. Data analysis allowed the selection of NEUTLR4+ (ex vivo) and CD4+IL-10+ (in vitro) as universal biomarkers increased in all leprosy patients and those exhibiting leprosy reactions. A range of biomarkers were commonly found in both poles of leprosy patients, including decreased levels of MONTGF-ß+ (ex vivo) and increased levels of MONTNF-α+, CD4+TGF-ß+, CD8+TLR2+, CD8+TNF-α+, CD8+IL-4+ and CD8+TGF-ß+ (in vitro). Noteworthy was that MONHLA-DR+ (ex vivo) and CD8+IL-10+ (in vitro) were particularly found in BL/L patients. Leprosy patients with Type-1 reaction exhibited a larger list of altered biomarkers, mainly involving activation markers (TLR2, TLR4, HLA-DR and DAF-2T) in NEU and MON along with CD4+ and CD8+ cells. In summary, this study provided insights about immunological features of leprosy poles and leprosy reactional episodes with putative applicability, including novel biomarkers for complementary diagnosis and future therapeutic approaches in clinical studies.


Assuntos
Imunidade Adaptativa , Biomarcadores/análise , Imunidade Inata , Hanseníase/patologia , Adolescente , Adulto , Antígenos de Bactérias/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae/imunologia , Adulto Jovem
5.
Front Immunol ; 9: 604, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686668

RESUMO

Leprosy is a chronic intracellular infection caused by the acid-fast bacillus, Mycobacterium leprae. The disease chiefly affects the skin, peripheral nerves, mucosa of the upper respiratory tract, and the eyes. The damage to peripheral nerves results in sensory and motor impairment with characteristic deformities and disability. Presently, the disease remains concentrated in resource-poor countries in tropical and warm temperate regions with the largest number of cases reported from India. Even though innate immunity influences the clinical manifestation of the disease, it is the components of adaptive immune system which seem to tightly correlate with the characteristic spectrum of leprosy. M. leprae-specific T cell anergy with bacillary dissemination is the defining feature of lepromatous leprosy (LL) patients in contrast to tuberculoid leprosy (TT) patients, which is characterized by strong Th1-type cell response with localized lesions. Generation of Th1/Th2-like effector cells, however, cannot wholly explain the polarized state of immunity in leprosy. A comprehensive understanding of the role of various regulatory T cells, such as Treg and natural killer T cells, in deciding the polarized state of T cell immunity is crucial. Interaction of these T cell subsets with effector T cells like Th1 (IFN-γ dominant), Th2 (interluekin-4 dominant), and Th17 (IL-17+) cells through various regulatory cytokines and molecules (programmed death-1/programmed death ligand-1) may constitute key events in dictating the state of immune polarization, thus controlling the clinical manifestation. Studying these important components of the adaptive immune system in leprosy patients is essential for better understanding of immune function, correlate(s) the immunity and mechanism(s) of its containment.


Assuntos
Células Matadoras Naturais/imunologia , Hanseníase/imunologia , Mycobacterium leprae/fisiologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Imunidade Adaptativa , Animais , Citocinas/metabolismo , Humanos , Equilíbrio Th1-Th2
6.
Med Hypotheses ; 109: 162-169, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29150278

RESUMO

Leprosy is a chronic infectious disease caused by Mycobacterium leprae mainly affecting skin and peripheral nerves. Leprosy has a broad range of clinical manifestations that range from mild (tuberculoid leprosy) to severe (lepromatous leprosy) forms, and are highly dependent on the host's immune response. Among the immune response elements involved in the pathogenesis of leprosy are the Toll-like receptors (TLRs), vitamin D receptor (VDR), natural killer cells (NK), and T cells. These innate and adaptive immune response elements may be related to the Notch signaling pathway, which is involved in immune cell growth, differentiation, and proliferation. We hypothesize that failure in Notch signaling in leprosy patients may be associated to: 1) compromising NK cell maturation, lysing of infected cells, and CD4+ Th1 differentiation. 2) VDR alterations and TLR polymorphisms may affect expression of Notch Delta-like ligands (DLL) in antigen presenting cells (APCs). 3) altered DLL expression by APCs could compromise CD4+ T cell differentiation towards the Th1 and Th17 effector phenotypes; and finally 4) expression of Notch Jagged ligands would induce CD4+ T cell differentiation towards Th2 effector phenotype and alternative activation of macrophages. Altogether, these signaling failures could favor proliferation of M. leprae in the host. Therefore, evidence of the proposed immunologic failures in leprosy patients would be essential for the better understanding of immunopathogenesis of this disease, and would ultimately enable detection of susceptible individuals, providing a valuable tool for prevention of this debilitating disease.


Assuntos
Hanseníase/imunologia , Hanseníase/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Imunidade Adaptativa , Animais , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular , Citocinas/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Hanseníase/fisiopatologia , Ligantes , Camundongos , Modelos Teóricos , Mycobacterium leprae , Fenótipo , Polimorfismo Genético , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo
7.
Infect Dis Poverty ; 6(1): 5, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28162092

RESUMO

Leprosy is a chronic infectious disease caused by Mycobacterium leprae. According to official reports from 121 countries across five WHO regions, there were 213 899 newly diagnosed cases in 2014. Although leprosy affects the skin and peripheral nerves, it can present across a spectrum of clinical and histopathological forms that are strongly influenced by the immune response of the infected individuals. These forms comprise the extremes of tuberculoid leprosy (TT), with a M. leprae-specific Th1, but also a Th17, response that limits M. leprae multiplication, through to lepromatous leprosy (LL), with M. leprae-specific Th2 and T regulatory responses that do not control M. leprae replication but rather allow bacterial dissemination. The interpolar borderline clinical forms present with similar, but less extreme, immune biases. Acute inflammatory episodes, known as leprosy reactions, are complications that may occur before, during or after treatment, and cause further neurological damages that can cause irreversible chronic disabilities. This review discusses the innate and adaptive immune responses, and their interactions, that are known to affect pathogenesis and influence the clinical outcome of leprosy.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Hanseníase , Imunidade Adaptativa , Humanos , Imunidade Inata , Hanseníase/tratamento farmacológico , Hanseníase/epidemiologia , Hanseníase/imunologia , Modelos Imunológicos , Resultado do Tratamento
8.
J Autoimmun ; 64: 91-100, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26257098

RESUMO

The major inflammatory bowel diseases, Crohn's disease and ulcerative colitis, are both debilitating disorders of the gastrointestinal tract, characterized by a dysregulated immune response to unknown environmental triggers. Both disorders have an important and overlapping genetic component, and much progress has been made in the last 20 years at elucidating some of the specific factors contributing to disease pathogenesis. Here we review our growing understanding of the immunogenetics of inflammatory bowel disease, from the twin studies that first implicated a role for the genome in disease susceptibility to the latest genome-wide association studies that have identified hundreds of associated loci. We consider the insight this offers into the biological mechanisms of the inflammatory bowel diseases, such as autophagy, barrier defence and T-cell differentiation signalling. We reflect on these findings in the context of other immune-related disorders, both common and rare. These observations include links both obvious, such as to pediatric colitis, and more surprising, such as to leprosy. As a changing picture of the underlying genetic architecture emerges, we turn to future directions for the study of complex human diseases such as these, including the use of next generation sequencing technologies for the identification of rarer risk alleles, and potential approaches for narrowing down associated loci to casual variants. We consider the implications of this work for translation into clinical practice, for example via early therapeutic hypotheses arising from our improved understanding of the biology of inflammatory bowel disease. Finally, we present potential opportunities to better understand environmental risk factors, such as the human microbiota in the context of immunogenetics.


Assuntos
Predisposição Genética para Doença , Imunogenética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Imunidade Adaptativa , Animais , Ligação Genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Imunidade Inata , Imunomodulação , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/epidemiologia , Fatores de Risco , Transdução de Sinais
9.
Nutr. hosp ; 29(1): 26-36, ene. 2014. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-120553

RESUMO

La lepra es una enfermedad infecciosa crónica causada por el Mycobacterium leprae, un bacilo intracelular de transmisión aérea. La enfermedad afecta la piel y los nervios periféricos y causa secuelas neurológicas. El bacilo se multiplica lentamente en el hospedador y posiblemente la enfermedad ocurre por el mal funcionamiento de la respuesta inmunitaria del hospedador. Esta revisión aborda el papel de algunos micronutrientes específicos en la respuesta inmunitaria, tales como las vitaminas A, D, E, C, el cinc y el selenio, detallando sus mecanismos de acción en las enfermedades infecciosas y en la lepra. La respuesta inmunitaria a los patógenos libera sustancias nocivas que producen lesión tisular. Esta revisión también aborda cómo una menor cantidad de antioxidantes puede contribuir a un aumento del estrés oxidativo y a complicaciones de las enfermedades infecciosas y la lepra. Puesto que los micronutrientes poseen un efecto regulador de la respuesta inmunitaria innata y adaptativa, es importante un equilibrio perfecto de sus concentraciones para mejorar la respuesta inmunitaria frente a los patógenos (AU)


Leprosy is a chronic infectious disease caused by Mycobacterium leprae, an intracellular bacillus of airborne transmission. The disease affects the skin and peripheral nerves and can cause neurological sequelae. The bacillusmultiplies slowly in the host and the disease probably occurs due to malfunctioning in host immune response. This review addresses the role of some specific micronutrients in the immune response, such as Vitamins A, D, E, C, Zinc and Selenium, detailing their mechanisms of actions in infectious diseases, and in leprosy. The immune response to pathogens releases harmful substances, which lead to tissue damage. This review discusses how a decreased level of antioxidants may contribute to an increased oxidative stress and complications of infectious diseases and leprosy. As the nutrients have a regulatory effect in the innate and adaptative immune responses, a perfect balance in their concentrations is important to improve the immune response against the pathogens (AU)


Assuntos
Humanos , Micronutrientes/farmacocinética , Hanseníase/dietoterapia , Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Estresse Oxidativo/fisiologia , Antioxidantes/farmacocinética , Infecções/imunologia , Ácido Ascórbico/farmacocinética , Zinco/farmacocinética , Selênio/farmacocinética , Vitamina D/farmacocinética
10.
In. Alves, Elioenai Dornelles; Ferreira, Telma Leonel; Ferreira, Isaias Nery. Hanseníase avanços e desafios. Brasilia, s.n, 2014. p.105-130.
Monografia em Português | Sec. Est. Saúde SP, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1081980
11.
Vet Immunol Immunopathol ; 155(4): 238-44, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24021155

RESUMO

MicroRNAs (miRNAs) are important regulators of gene expression and are known to play a key role in regulating both adaptive and innate immunity. Bovine alveolar macrophages (BAMs) help maintain lung homeostasis and constitute the front line of host defense against several infectious respiratory diseases, such as bovine tuberculosis. Little is known, however, about the role miRNAs play in these cells. In this study, we used a high-throughput sequencing approach, RNA-seq, to determine the expression levels of known and novel miRNAs in unchallenged BAMs isolated from lung lavages of eight different healthy Holstein-Friesian male calves. Approximately 80 million sequence reads were generated from eight BAM miRNA Illumina sequencing libraries, and 80 miRNAs were identified as being expressed in BAMs at a threshold of at least 100 reads per million (RPM). The expression levels of miRNAs varied over a large dynamic range, with a few miRNAs expressed at very high levels (up to 800,000RPM), and the majority lowly expressed. Notably, many of the most highly expressed miRNAs in BAMs have known roles in regulating immunity in other species (e.g. bta-let-7i, bta-miR-21, bta-miR-27, bta-miR-99b, bta-miR-146, bta-miR-147, bta-miR-155 and bta-miR-223). The most highly expressed miRNA in BAMs was miR-21, which has been shown to regulate the expression of antimicrobial peptides in Mycobacterium leprae-infected human monocytes. Furthermore, the predicted target genes of BAM-expressed miRNAs were found to be statistically enriched for roles in innate immunity. In addition to profiling the expression of known miRNAs, the RNA-seq data was also analysed to identify potentially novel bovine miRNAs. One putatively novel bovine miRNA was identified. To the best of our knowledge, this is the first RNA-seq study to profile miRNA expression in BAMs and provides an important reference dataset for investigating the regulatory roles miRNAs play in this important immune cell type.


Assuntos
Imunidade Adaptativa/imunologia , Bovinos/imunologia , Imunidade Inata/imunologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , MicroRNAs/imunologia , Imunidade Adaptativa/genética , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Imunidade Inata/genética , Pulmão/citologia , Macrófagos Alveolares/citologia , Masculino , MicroRNAs/genética , Análise de Sequência de RNA/veterinária
12.
Indian J Dermatol Venereol Leprol ; 79 Suppl 7: S1-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23974689

RESUMO

Psoriasis is a chronic inflammatory papulosquamous disease characterized by multiple remissions and relapses. For long, it was believed to be primarily a disorder of keratinization. However, the successful use of traditional immunosupressants and newer immunomodulatory agents in the treatment of psoriasis led to the belief that psoriasis is primarily a disease of Th1 cell immune dysregulation. Recent developments have brought up several new findings such as the role of Th17 cells and evidence of skin barrier dysfunction in psoriasis, akin to atopic dermatitis. The present review aims to focus on these new developments and explain the pathogenesis of psoriasis on the basis of currently available information.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Psoríase/fisiopatologia , Pele/fisiopatologia , Humanos , Psoríase/genética , Psoríase/imunologia , Pele/lesões , Células Th1/imunologia , Células Th17/imunologia
13.
Hum Mol Genet ; 22(21): 4430-7, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23784377

RESUMO

Previous genome-wide association studies (GWASs) identified multiple susceptibility loci that have highlighted the important role of TLR (Toll-like receptor) and CARD (caspase recruitment domain) genes in leprosy. A large three-stage candidate gene-based association study of 30 TLR and 47 CARD genes was performed in the leprosy samples of Chinese Han. Of 4363 SNPs investigated, eight SNPs showed suggestive association (P < 0.01) in our previously published GWAS datasets (Stage 1). Of the eight SNPs, rs2735591 and rs4889841 showed significant association (P < 0.001) in an independent series of 1504 cases and 1502 controls (Stage 2), but only rs2735591 (next to BCL10) showed significant association in the second independent series of 938 cases and 5827 controls (Stage 3). Rs2735591 showed consistent association across the three stages (P > 0.05 for heterogeneity test), significant association in the combined validation samples (Pcorrected = 5.54 × 10(-4) after correction for 4363 SNPs tested) and genome-wide significance in the whole GWAS and validation samples (P = 1.03 × 10(-9), OR = 1.24). In addition, we demonstrated the lower expression of BCL10 in leprosy lesions than normal skins and a significant gene connection between BCL10 and the eight previously identified leprosy loci that are associated with NFκB, a major regulator of downstream inflammatory responses, which provides further biological evidence for the association. We have discovered a novel susceptibility locus on 1p22, which implicates BCL10 as a new susceptibility gene for leprosy. Our finding highlights the important role of both innate and adaptive immune responses in leprosy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hanseníase/genética , Receptores Toll-Like/genética , Imunidade Adaptativa/genética , Idoso , Povo Asiático/genética , Proteína 10 de Linfoma CCL de Células B , Estudos de Casos e Controles , Cromossomos Humanos Par 1 , Feminino , Estudos de Associação Genética , Loci Gênicos , Humanos , Imunidade Inata/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
14.
Nihon Hansenbyo Gakkai Zasshi ; 82(3): 123-32, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24579460

RESUMO

Pulmonary tuberculosis is an infectious disease caused by Mycobacterium tuberculosis, and continues to be a serious threat to human life. Since M. tuberculosis establishes intracellular parasitism in macrophages, host innate and acquired immune systems have to detect and enhance bactericidal activity against the intracellular bacteria. Understanding of interaction between pathogenic factors of M. tuberculosis and host is also important to understand how immune system copes with the pathogen. In this review, we shortly summarize the mechanisms how innate and acquired immunity recognize M. tuberculosis or M. tuberculosis-infected cells and protects hosts from the infection. Furthermore, IL-17A/IL-23 axis, a recently focused inflammatory cytokine system, is discussed in the context of anti-mycobacterial protective immunity.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Interleucina-17/imunologia , Interleucina-23/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Humanos , Interleucina-23/fisiologia , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/fisiologia , Vacinas contra a Tuberculose , Tuberculose Pulmonar/prevenção & controle
15.
Future Microbiol ; 6(5): 533-49, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21585261

RESUMO

The past few years have been very productive concerning the identification of genes associated with leprosy. Candidate gene strategies using both case-control and family-based designs, as well as large-scale approaches such as linkage and gene-expression genomic scans and, more recently, genome-wide association studies, have refined and enriched the list of genes highlighting the most important innate and adaptive immune pathways associated with leprosy susceptibility or resistance. During the early events of host-pathogen interaction identified genes are involved in pattern recognition receptors, and mycobacterial uptake (TLRs, NOD2 and MRC1), which modulate autophagy. Another gene, LTA4H, which regulates the levels of lipoxin A4 and possibly interacts with lipid droplet-related events, also plays a role in the early immune responses to Mycobacterium leprae. Together, the activation of these pathways regulates cellular metabolism upon infection, activating cytokine production through NF-κB and vitamin D-vitamin D receptor pathways, while PARK2 and LRRK2 participate in the regulation of host-cell apoptosis. Concomitantly, genes triggered to form and maintain granulomas (TNF, LTA and IFNG) and genes involved in activating and differentiating T-helper cells (HLA, IL10, as well as the TNF/LTA axis and the IFNG/IL12 axis) bridge immunological regulation towards adaptive immunity. Subtle variations in these genes, mostly single nucleotide polymorphisms, alter the risk of developing the disease or the severity of leprosy. Knowing these genes and their role will ultimately lead to better strategies for leprosy prevention, treatment and early diagnosis. Finally, the same genes associated with leprosy were also associated with autoimmune (Crohn's disease, rheumathoid arthritis, psoriasis) or neurodegenerative diseases (Parkinson's and Alzheimer's). Thus, information retrieved using leprosy as a model could be valuable to understanding the pathogenesis of other complex diseases.


Assuntos
Imunidade Adaptativa/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Variação Genética , Imunidade Inata/genética , Hanseníase/imunologia , Mycobacterium leprae/patogenicidade , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Humanos , Hanseníase/genética , Hanseníase/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mycobacterium leprae/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas/genética , Proteínas/metabolismo
16.
s.l; s.n; 2011. 17 p. ilus, tab.
Não convencional em Inglês | Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1095891

RESUMO

The past few years have been very productive concerning the identification of genes associated with leprosy. Candidate gene strategies using both case-control and family-based designs, as well as large-scale approaches such as linkage and gene-expression genomic scans and, more recently, genome-wide association studies, have refined and enriched the list of genes highlighting the most important innate and adaptive immune pathways associated with leprosy susceptibility or resistance. During the early events of host-pathogen interaction identified genes are involved in pattern recognition receptors, and mycobacterial uptake (TLRs, NOD2 and MRC1), which modulate autophagy. Another gene, LTA4H, which regulates the levels of lipoxin A4 and possibly interacts with lipid droplet-related events, also plays a role in the early immune responses to Mycobacterium leprae. Together, the activation of these pathways regulates cellular metabolism upon infection, activating cytokine production through NF-κB and vitamin D-vitamin D receptor pathways, while PARK2 and LRRK2 participate in the regulation of host-cell apoptosis. Concomitantly, genes triggered to form and maintain granulomas (TNF, LTA and IFNG) and genes involved in activating and differentiating T-helper cells (HLA, IL10, as well as the TNF/LTA axis and the IFNG/IL12 axis) bridge immunological regulation towards adaptive immunity. Subtle variations in these genes, mostly single nucleotide polymorphisms, alter the risk of developing the disease or the severity of leprosy. Knowing these genes and their role will ultimately lead to better strategies for leprosy prevention, treatment and early diagnosis. Finally, the same genes associated with leprosy were also associated with autoimmune (Crohn's disease, rheumathoid arthritis, psoriasis) or neurodegenerative diseases (Parkinson's and Alzheimer's). Thus, information retrieved using leprosy as a model could be valuable to understanding the pathogenesis of other complex diseases.


Assuntos
Humanos , Animais , Camundongos , Variação Genética , Proteínas , Regulação da Expressão Gênica , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Imunidade Adaptativa/genética , Imunidade Inata/genética , Hanseníase/genética , Hanseníase/imunologia , Hanseníase/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mycobacterium leprae/genética , Mycobacterium leprae/patogenicidade
17.
J Drugs Dermatol ; 9(11): 1373-82, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21061760

RESUMO

Lepromatous leprosy is a model of immune evasion wherein pathogen-specific IL-10-secreting T cells and concomitant failure of Th-1 immunity permit uncontrolled proliferation of the intracellular pathogen, Mycobacterium leprae (M. leprae). The mechanism of this immune escape is unknown. Here, the authors report that phenolic glycolipid-1 (PGL-1), a major and distinguishing feature of the M. leprae cell wall, is expressed in the cell membrane of M. leprae-infected human dendritic cells, where it can activate complement in human serum. The authors demonstrate that PGL-1 and the C3 component of complement colocalize in lipid rafts in the dendritic cell membrane, and enter the immune synapse upon co-culture of M. leprae-infected DCs and T cells. Hence, activated C3 is strategically located to costimulate naïve T cells via the complement regulatory protein, CD46, a process known to stimulate the differentiation of IL-10-secreting regulatory T cells. These observations suggest a potential novel mechanism of immune evasion, wherein M. leprae may subvert host natural immunity to provoke an adaptive response that favors bacillary survival.


Assuntos
Hanseníase/imunologia , Mycobacterium leprae/imunologia , Imunidade Adaptativa , Antígenos de Bactérias/metabolismo , Ativação do Complemento , Complemento C3/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Glicolipídeos/metabolismo , Humanos , Interleucina-10/metabolismo , Mycobacterium leprae/metabolismo , Linfócitos T/imunologia
18.
Invest Clin ; 50(4): 513-27, 2009 Dec.
Artigo em Espanhol | MEDLINE | ID: mdl-20306725

RESUMO

Hansen's disease presents a wide spectrum of clinical and histopathological manifestations that reflect the nature of the immunological response of the host towards diverse Mycobacterium leprae components. The immunological system, composed by both innate and adaptive immunology, offers protection towards infections of various etiologies, among them bacterial. Bacteria, of course, have developed multiple strategies for evading host defenses, based on either very complex or simple mechanisms, but with a single purpose: to "resist" host attacks and to be able to survive. We have tried to summarize some recent studies in Hansen's disease, with more emphasis in the inmunology area. We think that in the future, all illnesses should also be very strongly related to other important aspects such as the social, environmental and economic, and whose development is not solved in a laboratory.


Assuntos
Hanseníase/imunologia , Imunidade Adaptativa/genética , Citocinas/imunologia , Humanos , Imunidade Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA