Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Microb Biotechnol ; 16(2): 404-417, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36420701

RESUMO

The dairy industry processes vast amounts of milk and generates high amounts of secondary by-products, which are still rich in nutrients (high Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD) levels) but contain high concentrations of salt. The current European legislation only allows disposing of these effluents directly into the waterways with previous treatment, which is laborious and expensive. Therefore, as much as possible, these by-products are reutilized as animal feed material and, if not applicable, used as fertilizers adding phosphorus, potassium, nitrogen, and other nutrients to the soil. Finding biological alternatives to revalue dairy by-products is of crucial interest in order to improve the utilization of dry dairy matter and reduce the environmental impact of every litre of milk produced. Debaryomyces hansenii is a halotolerant non-conventional yeast with high potential for this purpose. It presents some beneficial traits - capacity to metabolize a variety of sugars, tolerance to high osmotic environments, resistance to extreme temperatures and pHs - that make this yeast a well-suited option to grow using complex feedstock, such as industrial waste, instead of the traditional commercial media. In this work, we study for the first time D. hansenii's ability to grow and produce a recombinant protein (YFP) from dairy saline whey by-products. Cultivations at different scales (1.5, 100 and 500 ml) were performed without neither sterilizing the medium nor using pure water. Our results conclude that D. hansenii is able to perform well and produce YFP in the aforementioned salty substrate. Interestingly, it is able to outcompete other microorganisms present in the waste without altering its cell performance or protein production capacity.


Assuntos
Debaryomyces , Animais , Debaryomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Indústria de Laticínios , Cloreto de Sódio/metabolismo , Proteínas Recombinantes/metabolismo
2.
Int J Food Microbiol ; 285: 173-187, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30176565

RESUMO

The Danish Danbo cheese is a surface ripened semi-hard cheese, which before ripening is submerged in brine for up to 24 h. The brining is required in order to obtain the structural and organoleptic properties of the cheeses. Likewise, the content of NaCl in the cheese will influence especially the surface microbiota being of significant importance for flavour development and prevention of microbial spoilage. Even though the microbiota on cheese surfaces have been studied extensively, limited knowledge is available on the occurrence of microorganisms in cheese brine. The aim of the present study was to investigate by both culture-dependent and -independent techniques the brine microbiota in four Danish dairies producing Danbo cheese. The pH of the brines varied from 5.1 to 5.6 with a dry matter content from 20 to 27% (w/w). The content of lactate varied from 4.1 to 10.8 g/L and free amino acids from 65 to 224 mg/L. Bacteria were isolated on five different media with NaCl contents of 0.85-23.0% (w/v) NaCl. The highest count of 6.3 log CFU/mL was obtained on TSA added 4% (w/v) NaCl. For yeasts, the highest count was 3.7 log CFU/mL on MYGP added 8% (w/v) NaCl. A total of 31 bacterial and eight eukaryotic species were isolated including several halotolerant and/or halophilic species. Among bacteria, counts of ≥6.0 log CFU/mL were obtained for Tetragenococcus muriaticus and Psychrobacter celer, while counts between ≥4.5 and < 6.0 log CFU/mL were obtained for Lactococcus lactis, Staphylococcus equorum, Staphylococcus hominis, Chromohalobacter beijerinckii, Chromohalobacter japonicus and Microbacterium maritypicum. Among yeasts, counts of ≥3.5 log CFU/mL were only obtained for Debaryomyces hansenii. By amplicon-based high-throughput sequencing of 16S rRNA gene and ITS2 regions for bacteria and eukaryotes respectively, brines from the same dairy clustered together indicating the uniqueness of the dairy brine microbiota. To a great extent the results obtained by amplicon sequencing fitted with the culture-dependent technique though each of the two methodologies identified unique genera/species. Dairy brine handling procedures as e.g. microfiltration were found to influence the brine microbiota. The current study proves the occurrence of a specific dairy brine microbiota including several halotolerant and/or halophilic species most likely of sea salt origin. The importance of these species during especially the initial stages of cheese ripening and their influence on cheese quality and safety need to be investigated. Likewise, optimised brine handling procedures and microbial cultures are required to ensure an optimal brine microbiota.


Assuntos
Queijo/microbiologia , Microbiologia de Alimentos , Microbiota/fisiologia , Sais , Bactérias/efeitos dos fármacos , Bactérias/genética , Indústria de Laticínios , Dinamarca , Sequenciamento de Nucleotídeos em Larga Escala , Lactococcus lactis/efeitos dos fármacos , Lactococcus lactis/genética , Lactococcus lactis/isolamento & purificação , Microbiota/efeitos dos fármacos , Microbiota/genética , RNA Ribossômico 16S/genética , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Cloreto de Sódio/farmacologia , Leveduras/efeitos dos fármacos , Leveduras/genética
3.
J Dairy Sci ; 97(11): 7102-14, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25218748

RESUMO

Two studies were conducted. The objective of the first study was to assess the effects of a direct-fed microbial (DFM) product on dry matter intake, milk yield, milk components, disease incidence, and blood metabolites in dairy cattle. The objective of the second study was to assess the effects of DFM on apparent total-tract nutrient digestibility (ATTD). One hundred twenty primiparous and multiparous Holstein cows housed in a tiestall facility at the University of Guelph were used in study 1, and a subset (21) of the same cows participated in study 2. Cows were blocked by anticipated calving date (6 blocks) and then randomly assigned within parity to receive either a DFM supplement (Chr. Hansen Ltd., Milwaukee, WI) or placebo (control). The DFM supplement provided cows with 5.0 × 10(9) cfu/d of 3 strains of Enterococcus faecium and 2.0 × 10(9) cfu/d of Saccharomyces cerevisiae. The DFM supplement was mixed with 0.5 kg of ground dry corn and top-dressed during the morning feeding. The placebo supplement contained the corn only. Individual feed intakes and milk yields were recorded daily. The experiment commenced 3 wk before calving and ended 10 wk postcalving. Milk samples for component analysis were collected on 3 d per week and pooled by week. Body weights and body condition scores were assessed 1 d before enrollment in the study (wk -3), postcalving (wk 1), and at the end of wk 3, 6, and 9. Blood samples were collected before calving (wk -3) and the end of wk 1 and 3. Study 1 showed that treatment had no effect on average dry matter intake or milk yield (kg/d) over the duration of the experiment. The changes in body weights and body condition scores and net energy balance over the duration of the experiment did not differ due to treatment. Treatment had no effect on plasma concentrations of ß-hydroxybutyrate, nonesterified fatty acids, glucose, or haptoglobin. Study 2 investigated the effects of DFM on ATTD of starch and neutral detergent fiber (NDF) using insoluble NDF and lignin as internal markers. Study 2 used 21 cows (block 6) from the cows that participated in study 1 while the cows were between 60 and 70 d in milk. Cows receiving DFM had lower fecal starch content (0.88 ± 0.10 vs. 1.39 ± 0.25) and greater ATTD for starch (98.76% ± 0.28 vs. 97.87% ± 0.24) compared with those receiving placebo, and the AATD of NDF did not differ. Additionally, we detected no difference between internal markers for the measurement of ATTD. In conclusion, we were unable to detect a change in overall dry matter intake, milk yield, or milk and blood parameters with DFM supplementation. However, our results demonstrated that DFM can have a positive effect on total-tract starch digestibility. More studies are needed to investigate the effects of DFM and their modes of action under multiple management conditions.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Bovinos/microbiologia , Bovinos/fisiologia , Indústria de Laticínios/métodos , Bactérias Gram-Positivas/metabolismo , Probióticos/metabolismo , Saccharomyces cerevisiae/metabolismo , Ração Animal/análise , Animais , Análise Química do Sangue/veterinária , Dieta/veterinária , Digestão , Ingestão de Alimentos/fisiologia , Feminino , Lactação , Leite/química , Leite/metabolismo , Probióticos/administração & dosagem
4.
J Dairy Sci ; 96(9): 5836-43, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23810597

RESUMO

This project aimed to evaluate the effects 8 additives on the fermentation, dry matter (DM) losses, nutritive value, and aerobic stability of corn silage. Corn forage harvested at 31% DM was chopped (10mm) and treated with (1) deionized water (control); (2) Buchneri 500 (BUC; 1×10(5) cfu/g of Pediococcus pentosaceus 12455 and 4×10(5) cfu/g of Lactobacillus buchneri 40788; Lallemand Animal Nutrition, Milwaukee, WI); (3) sodium benzoate (BEN; 0.1% of fresh forage); (4) Silage Savor acid mixture (SAV: 0.1% of fresh forage; Kemin Industries Inc., Des Moines, IA); (5) 1×10(6) cfu/g of Acetobacter pasteurianus-ATCC 9323; (6) 1×10(6) cfu/g of Gluconobacter oxydans-ATCC 621; (7) Ecosyl 200T (1×10(5) cfu/g of Lactobacillus plantarum MTD/1; Ecosyl Products Inc., Byron, IL); (8) Silo-King WS (1.5×10(5) cfu/g of L. plantarum, P. pentosaceus and Enterococcus faecium; Agri-King, Fulton, IL); and (9) Biomax 5 (BIO; 1×10(5) cfu/g of L. plantarum PA-28 and K-270; Chr. Hansen Animal Health and Nutrition, Milwaukee, WI). Treated forage was ensiled in quadruplicate in mini silos at a density of 172 kg of DM/m(3) for 3 and 120 d. After 3 d of ensiling, the pH of all silages was below 4 but ethanol concentrations were least in BEN silage (2.03 vs. 3.24% DM) and lactic acid was greatest in SAV silage (2.97 vs. 2.51% DM). Among 120-d silages, additives did not affect DM recovery (mean=89.8% ± 2.27) or in vitro DM digestibility (mean=71.5% ± 0.63). The SAV silage had greater ammonia-N (0.85 g/kg of DM) and butyric acid (0.22 vs. 0.0% DM) than other treatments. In contrast, BEN and Silo-King silages had the least ammonia-N concentration and had no butyric acid. The BEN and A. pasteurianus silages had the lowest pH (3.69) and BEN silage had the least ethanol (1.04% DM) and ammonia nitrogen (0.64 g/kg DM) concentrations, suggesting that fermentation was more extensive and protein degradation was less in BEN silages. The BUC and BIO silages had greater acetic acid concentrations than control silages (3.19 and 3.19 vs. 2.78% DM), but yeast counts did not differ. Aerobic stability was increased by 64% by BUC (44.30 h) and by 35% by BEN (36.49 h), but other silages had similar values (27.0±1.13 h).


Assuntos
Silagem/normas , Zea mays , Acetobacter/metabolismo , Amônia/análise , Indústria de Laticínios/métodos , Enterococcus faecium/metabolismo , Etanol/análise , Aditivos Alimentares/farmacologia , Gluconobacter oxydans/metabolismo , Concentração de Íons de Hidrogênio , Ácido Láctico/análise , Lactobacillus/metabolismo , Lactobacillus plantarum/metabolismo , Pediococcus/metabolismo , Silagem/análise , Silagem/microbiologia
5.
N Biotechnol ; 28(6): 574-80, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21315193

RESUMO

To evaluate the feasibility of producing kefiran industrially, whey lactose, a by-product from dairy industry, was used as a low cost carbon source. Because the accumulation of lactic acid as a by-product of Lactobacillus kefiranofaciens inhibited cell growth and kefiran production, the kefir grain derived and non-derived yeasts were screened for their abilities to reduce lactic acid and promote kefiran production in a mixed culture. Six species of yeasts were examined: Torulaspora delbrueckii IFO 1626; Saccharomyces cerevisiae IFO 0216; Debaryomyces hansenii TISTR 5155; Saccharomyces exiguus TISTR 5081; Zygosaccharomyces rouxii TISTR 5044; and Saccharomyces carlsbergensis TISTR 5018. The mixed culture of L. kefiranofaciens with S. cerevisiae IFO 0216 enhanced the kefiran production best from 568 mg/L in the pure culture up to 807 and 938 mg/L in the mixed cultures under anaerobic and microaerobic conditions, respectively. The optimal conditions for kefiran production by the mixed culture were: whey lactose 4%; yeast extract 4%; initial pH of 5.5; and initial amounts of L. kefiranofaciens and S. cerevisiae IFO 0216 of 2.1×10(7) and 4.0×10(6)CFU/mL, respectively. Scaling up the mixed culture in a 2L bioreactor with dissolved oxygen control at 5% and pH control at 5.5 gave the maximum kefiran production of 2,580 mg/L in batch culture and 3,250 mg/L in fed-batch culture.


Assuntos
Lactobacillus/crescimento & desenvolvimento , Lactose/farmacologia , Polissacarídeos/biossíntese , Edulcorantes/farmacologia , Leveduras/crescimento & desenvolvimento , Indústria de Laticínios , Indústria Alimentícia
6.
Appl Environ Microbiol ; 74(7): 2210-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18281427

RESUMO

Production of smear-ripened cheese critically depends on the surface growth of multispecies microbial consortia comprising bacteria and yeasts. These microorganisms often originate from the cheese-making facility and, over many years, have developed into rather stable, dairy-specific associations. While commercial smear starters are frequently used, it is unclear to what degree these are able to establish successfully within the resident microbial consortia. Thus, the fate of the smear starters of a German Limburger cheese subjected to the "old-young" smearing technique was investigated during ripening. The cheese milk was supplemented with a commercial smear starter culture containing Debaryomyces hansenii, Galactomyces geotrichum, Arthrobacter arilaitensis, and Brevibacterium aurantiacum. Additionally, the cheese surface was inoculated with an extremely stable in-house microbial consortium. A total of 1,114 yeast and 1,201 bacterial isolates were identified and differentiated by Fourier transform infrared spectroscopy. Furthermore, mitochondrial DNA restriction fragment length polymorphism, random amplified polymorphic DNA, repetitive PCR, and pulsed field gel electrophoresis analyses were used to type selected isolates below the species level. The D. hansenii starter strain was primarily found early in the ripening process. The G. geotrichum starter strain in particular established itself after relocation to a new ripening room. Otherwise, it occurred at low frequencies. The bacterial smear starters could not be reisolated from the cheese surface at all. It is concluded that none of the smear starter strains were able to compete significantly and in a stable fashion against the resident microbial consortia, a result which might have been linked to the method of application. This finding raises the issue of whether addition of starter microorganisms during production of this type of cheese is actually necessary.


Assuntos
Queijo/microbiologia , Ecossistema , Indústria Alimentícia , Microbiologia de Alimentos , Saccharomycetales , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Indústria de Laticínios , Leite , Saccharomycetales/classificação , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier
7.
FEMS Yeast Res ; 6(8): 1243-53, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17156021

RESUMO

The diversity and dynamics of yeast populations in four batches of Livarot cheese at three points of ripening were determined. Nine different species were identified by Fourier transform infrared spectroscopy and/or sequencing, and each batch had its own unique yeast community. A real-time PCR method was developed to quantify the four main yeast species: Debaryomyces hansenii, Geotrichum candidum, Kluyveromyces sp. and Yarrowia lipolytica. Culture and molecular approaches showed that G. candidum was the dominant yeast in Livarot cheese. When D. hansenii was added as a commercial strain, it codominated with G. candidum. Kluyveromyces lactis was present only at the start of ripening. Yarrowia lipolytica appeared primarily at the end of ripening. We propose a scheme for the roles and dynamics of the principal Livarot yeasts.


Assuntos
Queijo/microbiologia , Geotrichum/isolamento & purificação , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Contagem de Colônia Microbiana , Indústria de Laticínios , França , Geotrichum/classificação , Kluyveromyces/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase , Espectroscopia de Infravermelho com Transformada de Fourier , Yarrowia/isolamento & purificação
8.
J Vet Med A Physiol Pathol Clin Med ; 53(4): 170-3, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16629949

RESUMO

The purpose of this pilot study was to evaluate under field conditions the effect of a probiotic containing Bacillus licheniformis and Bacillus subtilis on young lamb mortality and sheep milk production when administered in the late pregnancy and lactation feed of ewes. In a sheep farm, two groups of milking ewes with identical genetic material, management, nutrition, health status and similar production characteristics were formed. One group (46 ewes) served as control, while the other one (48 ewes) served as a probiotic-treated group. Both groups of ewes received a similar feeding regiment, but the ewes of the second group were additionally offered a probiotic product containing B. licheniformis and B. subtilis (BioPlus 2B, Chr. Hansen, Denmark) at the approximate dose of 2.56 x 10(9) viable spores per ewe per day. Lamb mortality during the 1.5 months suckling period, and milk yield during the 2 months of milk collection for commercial purposes have been recorded. In the non-treated control group, 13.1% mortality was observed versus 7.8% in the probiotic-treated group (P = 0.33), with mortality being mainly due to diarrhoea. Microbiological examination of diarrhoeic faeces from some of the dead lambs in both groups revealed the presence of Escherichia coli. The average daily milk yield per ewe was significantly lower in the control group (0.80 l) than that in the probiotic-treated group (0.93 l) (P < 0.05). Fat and protein content of milk in ewes that received probiotics was significantly (P < 0.05) increased compared with untreated ewes. It was concluded that supplementing ewe's feed with probiotics may have beneficial effect on subsequent milk yields, fat and protein content.


Assuntos
Bacillus/fisiologia , Leite/química , Leite/metabolismo , Probióticos , Ovinos/fisiologia , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Animais Lactentes , Bacillus subtilis/fisiologia , Contagem de Colônia Microbiana , Indústria de Laticínios , Suplementos Nutricionais , Feminino , Lactação/fisiologia , Leite/efeitos dos fármacos , Gravidez , Distribuição Aleatória , Ovinos/crescimento & desenvolvimento , Ovinos/microbiologia , Doenças dos Ovinos/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA