Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Br J Dermatol ; 190(3): 305-315, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-37889986

RESUMO

Inflammasomes are cytoplasmic protein complexes that play a crucial role in protecting the host against pathogenic and sterile stressors by initiating inflammation. Upon activation, these complexes directly regulate the proteolytic processing and activation of proinflammatory cytokines interleukin (IL)-1ß and IL-18 to induce a potent inflammatory response, and induce a programmed form of cell death called pyroptosis to expose intracellular pathogens to the surveillance of the immune system, thus perpetuating inflammation. There are various types of inflammasome complexes, with the NLRP1 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-1) inflammasome being the first one identified and currently recognized as the predominant inflammasome sensor protein in human keratinocytes. Human NLRP1 exhibits a unique domain structure, containing both an N-terminal pyrin (PYD) domain and an effector C-terminal caspase recruitment domain (CARD). It can be activated by diverse stimuli, such as viruses, ultraviolet B radiation and ribotoxic stress responses. Specific mutations in NLRP1 or related genes have been associated with rare monogenic skin disorders, such as multiple self-healing palmoplantar carcinoma; familial keratosis lichenoides chronica; autoinflammation with arthritis and dyskeratosis; and dipeptidyl peptidase 9 deficiency. Recent research breakthroughs have also highlighted the involvement of dysfunctions in the NLRP1 pathway in a handful of seemingly unrelated dermatological conditions. These range from monogenic autoinflammatory diseases to polygenic autoimmune diseases such as vitiligo, psoriasis, atopic dermatitis and skin cancer, including squamous cell carcinoma, melanoma and Kaposi sarcoma. Additionally, emerging evidence implicates NLRP1 in systemic lupus erythematosus, pemphigus vulgaris, Addison disease, Papillon-Lefèvre syndrome and leprosy. The aim of this review is to shed light on the implications of pathological dysregulation of the NLRP1 inflammasome in skin diseases and investigate the potential rationale for targeting this pathway as a future therapeutic approach.


Assuntos
Dermatite , Dermatopatias , Neoplasias Cutâneas , Humanos , Inflamassomos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas NLR/metabolismo , Neoplasias Cutâneas/patologia , Dermatopatias/etiologia , Inflamação/genética , Interleucina-1beta/metabolismo
2.
Neurobiol Dis ; 169: 105724, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35427743

RESUMO

Mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene are associated with familial and sporadic cases of Parkinson's disease (PD) but are also found in patients with immune- related disorders, such as inflammatory bowel disease (IBD) and leprosy, linking LRRK2 to the immune system. Supporting this genetic evidence, in the last decade LRRK2 was robustly shown to modulate inflammatory responses at both systemic and central nervous system level. In this review, we recapitulate the role of LRRK2 in central and peripheral inflammation in PD and inflammatory disease models. Moreover, we discuss how LRRK2 inhibitors and anti- inflammatory drugs may be beneficial at reducing disease risk/progression in LRRK2-mutation carriers and manifesting PD patients, thus supporting LRRK2 as a promising disease-modifying PD strategy.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Animais , Humanos , Sistema Imunitário , Inflamação/genética , Inflamação/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/imunologia , Mutação , Doença de Parkinson/genética , Doença de Parkinson/imunologia
3.
Immunity ; 53(4): 878-894.e7, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053333

RESUMO

High-throughput single-cell RNA-sequencing (scRNA-seq) methodologies enable characterization of complex biological samples by increasing the number of cells that can be profiled contemporaneously. Nevertheless, these approaches recover less information per cell than low-throughput strategies. To accurately report the expression of key phenotypic features of cells, scRNA-seq platforms are needed that are both high fidelity and high throughput. To address this need, we created Seq-Well S3 ("Second-Strand Synthesis"), a massively parallel scRNA-seq protocol that uses a randomly primed second-strand synthesis to recover complementary DNA (cDNA) molecules that were successfully reverse transcribed but to which a second oligonucleotide handle, necessary for subsequent whole transcriptome amplification, was not appended due to inefficient template switching. Seq-Well S3 increased the efficiency of transcript capture and gene detection compared with that of previous iterations by up to 10- and 5-fold, respectively. We used Seq-Well S3 to chart the transcriptional landscape of five human inflammatory skin diseases, thus providing a resource for the further study of human skin inflammation.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Inflamação/genética , RNA Citoplasmático Pequeno/genética , Pele/patologia , Animais , Linhagem Celular , DNA Complementar/genética , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcrição Gênica/genética , Transcriptoma/genética
4.
Int Rev Immunol ; 39(1): 3-10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31633447

RESUMO

Interleukin-37 (IL-37) is a newly introduced cytokine to interleukin-1 family. Many studies have demonstrated that IL-37 owns immunosuppressive effects against both innate and acquired immune responses via inhibition of several inflammatory mediators. Thence, IL-37 has anti-inflammatory action in some diseases including cancer, autoimmune diseases, cardiovascular diseases and infectious diseases. Recent investigations have reported the important role of IL-37 in immunity against viral, bacterial and fungal infections as they prevent inappropriate immune activation and suppress the inflammation induced by these infectious agents. Thus, IL-37 could play a crucial role in protecting host tissues from injury during infections by damping excessive inflammatory reactions. However, the precise roles of IL-37 in infectious diseases remain largely unknown. The current review shed light on the pivotal role of IL-37 in infectious diseases such as the human immunodeficiency virus-1 (HIV-1), viral myocarditis, hepatitis C virus (HCV), hepatitis B virus (HBV), tuberculosis, leprosy, pneumococcal pneumonia, listeria infection, aspergillosis, candidiasis and eumycetoma. In conclusion, this review reported that IL-37 has a crucial role in reducing infection-associated inflammation and has a good impact on inflammation-induced pathology. However, tight regulation that achieved balance between effector immune responses that required for pathogen elimination and limited tissue damage that resulted from excessive inflammation should be existed in the potential IL-37 therapy to prevent clinical complications of a disease.


Assuntos
Infecções Bacterianas/imunologia , Inflamação/imunologia , Interleucina-1/imunologia , Micoses/imunologia , Viroses/imunologia , Animais , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Citocinas/imunologia , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-1/genética , Interleucina-1/metabolismo , Micoses/metabolismo , Micoses/microbiologia , Viroses/metabolismo , Viroses/virologia
5.
Cytokine ; 126: 154873, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31629113

RESUMO

Type 1 reactions (T1R) an inflammatory condition, of local skin patches in 30-40% leprosy patients during the course of MDT. IL-17A and IL-17F play an important role in regulating skin inflammation through neutrophils. In the present study, we have analyzed 18 of each T1R and Non-reactions (NR) patients through flow cytometry and qPCR. Interestingly we found that, CD3+CD4+ gated IL-17A+IL-17F+ cells were significantly high in T1R in both MLSA stimulated PBMCs and skin lesions as compared to NR leprosy patients. Hierarchical clustering analysis of gene expression showed that CXCL6, CXCL5, CCL20, CCL7, MMP13 and IL-17RB expression were significantly associated with IL-17A and IL-17F expression (Spearman r2 = 0.77 to 0.98), neutrophils and monocyte markers respectively. In this study, the inflammation noted in lesions of T1R is a different phenotype of Th17 which produce double positive IL-17A+IL17F+ and also contributes IL-17 producing neutrophils and thus would be useful for monitoring, diagnosis and treatment response before reactions episodes.


Assuntos
Citocinas/metabolismo , Interleucina-17/metabolismo , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Neutrófilos/metabolismo , Células Th17/metabolismo , Adulto , Complexo CD3/metabolismo , Antígenos CD4/metabolismo , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Quimiocina CXCL6/genética , Quimiocina CXCL6/metabolismo , Citocinas/genética , Quimioterapia Combinada , Feminino , Citometria de Fluxo , Humanos , Inflamação/genética , Inflamação/metabolismo , Hanseníase/patologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Pessoa de Meia-Idade , Família Multigênica , Reação em Cadeia da Polimerase em Tempo Real
6.
Sci Transl Med ; 11(511)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554740

RESUMO

Variants in the leucine-rich repeat kinase-2 (LRRK2) gene are associated with Parkinson's disease, leprosy, and Crohn's disease, three disorders with inflammation as an important component. Because of its high expression in granulocytes and CD68-positive cells, LRRK2 may have a function in innate immunity. We tested this hypothesis in two ways. First, adult mice were intravenously inoculated with Salmonella typhimurium, resulting in sepsis. Second, newborn mouse pups were intranasally infected with reovirus (serotype 3 Dearing), which induced encephalitis. In both mouse models, wild-type Lrrk2 expression was protective and showed a sex effect, with female Lrrk2-deficient animals not controlling infection as well as males. Mice expressing Lrrk2 carrying the Parkinson's disease-linked p.G2019S mutation controlled infection better, with reduced bacterial growth and longer animal survival during sepsis. This gain-of-function effect conferred by the p.G2019S mutation was mediated by myeloid cells and was abolished in animals expressing a kinase-dead Lrrk2 variant, p.D1994S. Mouse pups with reovirus-induced encephalitis that expressed the p.G2019S Lrrk2 mutation showed increased mortality despite lower viral titers. The p.G2019S mutant Lrrk2 augmented immune cell chemotaxis and generated more reactive oxygen species during virulent infection. Reovirus-infected brains from mice expressing the p.G2019S mutant Lrrk2 contained higher concentrations of α-synuclein. Animals expressing one or two p.D1994S Lrrk2 alleles showed lower mortality from reovirus-induced encephalitis. Thus, Lrrk2 alleles may alter the course of microbial infections by modulating inflammation, and this may be dependent on the sex and genotype of the host as well as the type of pathogen.


Assuntos
Alelos , Infecções/enzimologia , Infecções/genética , Inflamação/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Caracteres Sexuais , Animais , Encéfalo/patologia , Encéfalo/virologia , Quimiotaxia , Encefalite/virologia , Feminino , Humanos , Infecções/imunologia , Infecções/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/deficiência , Leucócitos/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética , Espécies Reativas de Oxigênio/metabolismo , Reoviridae/fisiologia , Salmonella typhimurium/crescimento & desenvolvimento , Sepse/microbiologia , Análise de Sobrevida , alfa-Sinucleína/metabolismo
7.
PLoS Negl Trop Dis ; 11(7): e0005754, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28715406

RESUMO

The pathways that trigger exacerbated immune reactions in leprosy could be determined by genetic variations. Here, in a prospective approach, both genetic and non-genetic variables influencing the amount of time before the development of reactional episodes were studied using Kaplan-Meier survival curves, and the genetic effect was estimated by the Cox proportional-hazards regression model. In a sample including 447 leprosy patients, we confirmed that gender (male), and high bacillary clinical forms are risk factors for leprosy reactions. From the 15 single nucleotide polymorphisms (SNPs) at the 8 candidate genes genotyped (TNF/LTA, IFNG, IL10, TLR1, NOD2, SOD2, and IL6) we observed statistically different survival curves for rs751271 at the NOD2 and rs2069845 at the IL6 genes (log-rank p-values = 0.002 and 0.023, respectively), suggesting an influence on the amount of time before developing leprosy reactions. Cox models showed associations between the SNPs rs751271 at NOD2 and rs2069845 at IL6 with leprosy reactions (HRGT = 0.45, p = 0.002; HRAG = 1.88, p = 0.0008, respectively). Finally, IL-6 and IFN-γ levels were confirmed as high, while IL-10 titers were low in the sera of reactional patients. Rs751271-GT genotype-bearing individuals correlated (p = 0.05) with lower levels of IL-6 in sera samples, corroborating the genetic results. Although the experimental size may be considered a limitation of the study, the findings confirm the association of classical variables such as sex and clinical forms with leprosy, demonstrating the consistency of the results. From the results, we conclude that SNPs at the NOD2 and IL6 genes are associated with leprosy reactions as an outcome. NOD2 also has a clear functional pro-inflammatory link that is coherent with the exacerbated responses observed in these patients.


Assuntos
Predisposição Genética para Doença , Inflamação/patologia , Interleucina-6/genética , Hanseníase/patologia , Proteína Adaptadora de Sinalização NOD2/genética , Polimorfismo de Nucleotídeo Único , Adulto , Estudos de Coortes , Feminino , Humanos , Inflamação/genética , Hanseníase/genética , Masculino , Pessoa de Meia-Idade , Fatores de Risco
8.
Protein Cell ; 8(1): 55-66, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27830463

RESUMO

The innate immune system is critical for clearing infection, and is tightly regulated to avert excessive tissue damage. Nod1/2-Rip2 signaling, which is essential for initiating the innate immune response to bacterial infection and ER stress, is subject to many regulatory mechanisms. In this study, we found that LRRK2, encoded by a gene implicated in Crohn's disease, leprosy and familial Parkinson's disease, modulates the strength of Nod1/2-Rip2 signaling by enhancing Rip2 phosphorylation. LRRK2 deficiency markedly reduces cytokine production in macrophages upon Nod2 activation by muramyl dipeptide (MDP), Nod1 activation by D-gamma-Glu-meso-diaminopimelic acid (iE-DAP) or ER stress. Our biochemical study shows that the presence of LRRK2 is necessary for optimal phosphorylation of Rip2 upon Nod2 activation. Therefore, this study reveals that LRRK2 is a new positive regulator of Rip2 and promotes inflammatory cytokine induction through the Nod1/2-Rip2 pathway.


Assuntos
Citocinas/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Transdução de Sinais/imunologia , Animais , Citocinas/genética , Células HEK293 , Humanos , Imunidade Inata/genética , Inflamação/genética , Inflamação/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Fosforilação/genética , Fosforilação/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/genética
9.
Med Hypotheses ; 94: 112-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27515215

RESUMO

Studies have reported a wide range of inflammatory responses in the nerve, skin and plasma of leprosy patients. The expression levels of each biomolecule was individualistic, however could be categorized as high and low based on their statistical mean level. Here we report for the first time, expression of a set of biomolecules relating with each other in a defined proportion. The hypothesis of this paper is that the segregation of high and low combinations of a set of biomolecules follows either classical Mendelian dihybrid ratio or epistatic ratios. This hypothesis was tested for 17 molecules in three tissues; nerve, skin and plasma and were confirmed to interact in 9:7, 9:3:4, 12:3:1, 13:3, 15:1 epistatic proportions. These findings suggest that there could be a significant role of networking of molecules in defined epistatic proportions and could be important in pathophysiology of peripheral nerve.


Assuntos
Epistasia Genética , Inflamação/genética , Hanseníase/patologia , Algoritmos , Antígenos de Bactérias/imunologia , Genes Recessivos , Humanos , Inflamação/imunologia , Hanseníase/genética , Hanseníase/imunologia , Modelos Genéticos , Modelos Estatísticos , Neurônios/metabolismo , Nervos Periféricos/fisiopatologia , Fenótipo , Plasma/metabolismo , Estudos Retrospectivos , Pele/metabolismo , Resultado do Tratamento
10.
PLoS Negl Trop Dis ; 10(2): e0004412, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26844546

RESUMO

BACKGROUND: Depending on the epidemiological setting, a variable proportion of leprosy patients will suffer from excessive pro-inflammatory responses, termed type-1 reactions (T1R). The LRRK2 gene encodes a multi-functional protein that has been shown to modulate pro-inflammatory responses. Variants near the LRRK2 gene have been associated with leprosy in some but not in other studies. We hypothesized that LRRK2 was a T1R susceptibility gene and that inconsistent association results might reflect different proportions of patients with T1R in the different sample settings. Hence, we evaluated the association of LRRK2 variants with T1R susceptibility. METHODOLOGY: An association scan of the LRRK2 locus was performed using 156 single-nucleotide polymorphisms (SNPs). Evidence of association was evaluated in two family-based samples: A set of T1R-affected and a second set of T1R-free families. Only SNPs significant for T1R-affected families with significant evidence of heterogeneity relative to T1R-free families were considered T1R-specific. An expression quantitative trait locus (eQTL) analysis was applied to evaluate the impact of T1R-specific SNPs on LRRK2 gene transcriptional levels. PRINCIPAL FINDINGS: A total of 18 T1R-specific variants organized in four bins were detected. The core SNP capturing the T1R association was the LRRK2 missense variant M2397T (rs3761863) that affects LRRK2 protein turnover. Additionally, a bin of nine SNPs associated with T1R were eQTLs for LRRK2 in unstimulated whole blood cells but not after exposure to Mycobacterium leprae antigen. SIGNIFICANCE: The results support a preferential association of LRRK2 variants with T1R. LRRK2 involvement in T1R is likely due to a pathological pro-inflammatory loop modulated by LRRK2 availability. Interestingly, the M2397T variant was reported in association with Crohn's disease with the same risk allele as in T1R suggesting common inflammatory mechanism in these two distinct diseases.


Assuntos
Suscetibilidade a Doenças , Inflamação/genética , Inflamação/patologia , Hanseníase/genética , Hanseníase/patologia , Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases/genética , Adulto , Feminino , Estudos de Associação Genética , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Polimorfismo de Nucleotídeo Único , Adulto Jovem
11.
Nat Commun ; 6: 7971, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26259071

RESUMO

Neutrophils are an abundant immune cell type involved in both antimicrobial defence and autoimmunity. The regulation of their gene expression, however, is still largely unknown. Here we report an eQTL study on isolated neutrophils from 114 healthy individuals of Chinese ethnicity, identifying 21,210 eQTLs on 832 unique genes. Unsupervised clustering analysis of these eQTLs confirms their role in inflammatory responses and immunological diseases but also indicates strong involvement in dermatological pathologies. One of the strongest eQTL identified (rs2058660) is also the tagSNP of a linkage block reported to affect leprosy and Crohn's disease in opposite directions. In a functional study, we can link the C allele with low expression of the ß-chain of IL18-receptor (IL18RAP). In neutrophils, this results in a reduced responsiveness to IL-18, detected both on the RNA and protein level. Thus, the polymorphic regulation of human neutrophils can impact beneficial as well as pathological inflammatory responses.


Assuntos
Regulação da Expressão Gênica/fisiologia , Estudo de Associação Genômica Ampla , Neutrófilos/metabolismo , Adolescente , Adulto , Análise por Conglomerados , Feminino , Ligação Genética , Genótipo , Humanos , Inflamação/genética , Inflamação/metabolismo , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Adulto Jovem
12.
Nat Genet ; 47(3): 267-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25642632

RESUMO

Genome-wide association studies (GWAS) have led to the discovery of several susceptibility loci for leprosy with robust evidence, providing biological insight into the role of host genetic factors in mycobacterial infection. However, the identified loci only partially explain disease heritability, and additional genetic risk factors remain to be discovered. We performed a 3-stage GWAS of leprosy in the Chinese population using 8,313 cases and 16,017 controls. Besides confirming all previously published loci, we discovered six new susceptibility loci, and further gene prioritization analysis of these loci implicated BATF3, CCDC88B and CIITA-SOCS1 as new susceptibility genes for leprosy. A systematic evaluation of pleiotropic effects demonstrated a high tendency for leprosy susceptibility loci to show association with autoimmunity and inflammatory diseases. Further analysis suggests that molecular sensing of infection might have a similar pathogenic role across these diseases, whereas immune responses have discordant roles in infectious and inflammatory diseases.


Assuntos
Loci Gênicos , Hanseníase/genética , Adulto , Idoso , Povo Asiático/genética , Autoimunidade/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Inflamação/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco
13.
Pathol Biol (Paris) ; 61(3): 120-8, 2013 Jun.
Artigo em Francês | MEDLINE | ID: mdl-23711949

RESUMO

Despite a natural reservoir of Mycobacterium leprae limited to humans and free availability of an effective antibiotic treatment, more than 200,000 people develop leprosy each year. This disease remains a major cause of disability and social stigma worldwide. The cause of this constant incidence is currently unknown and indicates that important aspects of the complex relationship between the pathogen and its human host remain to be discovered. An important contribution of host genetics to susceptibility to leprosy has long been suggested to account for the considerable variability between individuals sustainably exposed to M. leprae. Given the inability to cultivate M. leprae in vitro and in the absence of relevant animal model, genetic epidemiology is the main strategy used to identify the genes and, consequently, the immunological pathways involved in protective immunity to M. leprae. Recent genome-wide studies have identified new pathophysiological pathways which importance is only beginning to be understood. In addition, the prism of human genetics placed leprosy at the crossroads of other common diseases such as Crohn's disease, asthma or myocardial infarction. Therefore, novel lights on the pathogenesis of many common diseases could eventually emerge from the detailed understanding of a disease of the shadows.


Assuntos
Doenças Transmissíveis/genética , Predisposição Genética para Doença , Hanseníase/genética , Doenças Transmissíveis/epidemiologia , Doença de Crohn/epidemiologia , Doença de Crohn/genética , Marcadores Genéticos/fisiologia , Estudo de Associação Genômica Ampla , Humanos , Inflamação/epidemiologia , Inflamação/genética , Hanseníase/epidemiologia , Mycobacterium leprae
14.
BMC Res Notes ; 5: 292, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22695124

RESUMO

BACKGROUND: Thalidomide is an anti-inflammatory and anti-angiogenic drug currently used for the treatment of several diseases, including erythema nodosum leprosum, which occurs in patients with lepromatous leprosy. In this research, we use DNA microarray analysis to identify the impact of thalidomide on gene expression responses in human cells after lipopolysaccharide (LPS) stimulation. We employed a two-stage framework. Initially, we identified 1584 altered genes in response to LPS. Modulation of this set of genes was then analyzed in the LPS stimulated cells treated with thalidomide. RESULTS: We identified 64 genes with altered expression induced by thalidomide using the rank product method. In addition, the lists of up-regulated and down-regulated genes were investigated by means of bioinformatics functional analysis, which allowed for the identification of biological processes affected by thalidomide. Confirmatory analysis was done in five of the identified genes using real time PCR. CONCLUSIONS: The results showed some genes that can further our understanding of the biological mechanisms in the action of thalidomide. Of the five genes evaluated with real time PCR, three were down regulated and two were up regulated confirming the initial results of the microarray analysis.


Assuntos
Anti-Inflamatórios/farmacologia , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Inflamação/tratamento farmacológico , Leucócitos Mononucleares/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Talidomida/farmacologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
15.
J Neurosci ; 32(5): 1602-11, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22302802

RESUMO

Missense mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset Parkinson's disease (PD), and common genetic variation in LRRK2 modifies susceptibility to Crohn's disease and leprosy. High levels of LRRK2 expression in peripheral monocytes and macrophages suggest a role for LRRK2 in these cells, yet little is known about LRRK2 expression and function in immune cells of the brain. Here, we demonstrate a role for LRRK2 in mediating microglial proinflammatory responses and morphology. In a murine model of neuroinflammation, we observe robust induction of LRRK2 in microglia. Experiments with toll-like receptor 4 (TLR4)-stimulated rat primary microglia show that inflammation increases LRRK2 activity and expression, while inhibition of LRRK2 kinase activity or knockdown of protein attenuates TNFα secretion and nitric oxide synthase (iNOS) induction. LRRK2 inhibition blocks TLR4 stimulated microglial process outgrowth and impairs ADP stimulated microglial chemotaxis. However, actin inhibitors that phenocopy inhibition of process outgrowth and chemotaxis fail to modify TLR4 stimulation of TNFα secretion and inducible iNOS induction, suggesting that LRRK2 acts upstream of cytoskeleton control as a stress-responsive kinase. These data demonstrate LRRK2 in regulating responses in immune cells of the brain and further implicate microglial involvement in late-onset PD.


Assuntos
Microglia/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Células Cultivadas , Quimiotaxia/fisiologia , Feminino , Células HEK293 , Humanos , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Proteínas Serina-Treonina Quinases/genética , Distribuição Aleatória , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA