Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Neurobiol Dis ; 169: 105724, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35427743

RESUMO

Mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene are associated with familial and sporadic cases of Parkinson's disease (PD) but are also found in patients with immune- related disorders, such as inflammatory bowel disease (IBD) and leprosy, linking LRRK2 to the immune system. Supporting this genetic evidence, in the last decade LRRK2 was robustly shown to modulate inflammatory responses at both systemic and central nervous system level. In this review, we recapitulate the role of LRRK2 in central and peripheral inflammation in PD and inflammatory disease models. Moreover, we discuss how LRRK2 inhibitors and anti- inflammatory drugs may be beneficial at reducing disease risk/progression in LRRK2-mutation carriers and manifesting PD patients, thus supporting LRRK2 as a promising disease-modifying PD strategy.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Animais , Humanos , Sistema Imunitário , Inflamação/genética , Inflamação/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/imunologia , Mutação , Doença de Parkinson/genética , Doença de Parkinson/imunologia
2.
Front Immunol ; 12: 647987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248935

RESUMO

Cutaneous leishmaniasis caused by L. braziliensis induces a pronounced Th1 inflammatory response characterized by IFN-γ production. Even in the absence of parasites, lesions result from a severe inflammatory response in which inflammatory cytokines play an important role. Different approaches have been used to evaluate the therapeutic potential of orally administrated heat shock proteins (Hsp). These proteins are evolutionarily preserved from bacteria to humans, highly expressed under inflammatory conditions and described as immunodominant antigens. Tolerance induced by the oral administration of Hsp65 is capable of suppressing inflammation and inducing differentiation in regulatory cells, and has been successfully demonstrated in several experimental models of autoimmune and inflammatory diseases. We initially administered recombinant Lactococcus lactis (L. lactis) prior to infection as a proof of concept, in order to verify its immunomodulatory potential in the inflammatory response arising from L. braziliensis. Using this experimental approach, we demonstrated that the oral administration of a recombinant L. lactis strain, which produces and secretes Hsp65 from Mycobacterium leprae directly into the gut, mitigated the effects of inflammation caused by L. braziliensis infection in association or not with PAM 3CSK4 (N-α-Palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-L-cysteine, a TLR2 agonist). This was evidenced by the production of anti-inflammatory cytokines and the expansion of regulatory T cells in the draining lymph nodes of BALB/c mice. Our in vitro experimental results suggest that IL-10, TLR-2 and LAP are important immunomodulators in L. braziliensis infection. In addition, recombinant L. lactis administered 4 weeks after infection was observed to decrease lesion size, as well as the number of parasites, and produced a higher IL-10 production and decrease IFN-γ secretion. Together, these results indicate that Hsp65-producing L. lactis can be considered as an alternative candidate for treatment in both autoimmune diseases, as well as in chronic infections that cause inflammatory disease.


Assuntos
Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/metabolismo , Chaperonina 60/administração & dosagem , Chaperonina 60/metabolismo , Tolerância Imunológica/efeitos dos fármacos , Lactococcus lactis/metabolismo , Leishmania braziliensis/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Mycobacterium leprae/enzimologia , Administração Oral , Animais , Proteínas de Bactérias/genética , Chaperonina 60/genética , Citocinas/metabolismo , Feminino , Inflamação/tratamento farmacológico , Inflamação/imunologia , Lactococcus lactis/genética , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia
3.
Int Rev Immunol ; 39(1): 3-10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31633447

RESUMO

Interleukin-37 (IL-37) is a newly introduced cytokine to interleukin-1 family. Many studies have demonstrated that IL-37 owns immunosuppressive effects against both innate and acquired immune responses via inhibition of several inflammatory mediators. Thence, IL-37 has anti-inflammatory action in some diseases including cancer, autoimmune diseases, cardiovascular diseases and infectious diseases. Recent investigations have reported the important role of IL-37 in immunity against viral, bacterial and fungal infections as they prevent inappropriate immune activation and suppress the inflammation induced by these infectious agents. Thus, IL-37 could play a crucial role in protecting host tissues from injury during infections by damping excessive inflammatory reactions. However, the precise roles of IL-37 in infectious diseases remain largely unknown. The current review shed light on the pivotal role of IL-37 in infectious diseases such as the human immunodeficiency virus-1 (HIV-1), viral myocarditis, hepatitis C virus (HCV), hepatitis B virus (HBV), tuberculosis, leprosy, pneumococcal pneumonia, listeria infection, aspergillosis, candidiasis and eumycetoma. In conclusion, this review reported that IL-37 has a crucial role in reducing infection-associated inflammation and has a good impact on inflammation-induced pathology. However, tight regulation that achieved balance between effector immune responses that required for pathogen elimination and limited tissue damage that resulted from excessive inflammation should be existed in the potential IL-37 therapy to prevent clinical complications of a disease.


Assuntos
Infecções Bacterianas/imunologia , Inflamação/imunologia , Interleucina-1/imunologia , Micoses/imunologia , Viroses/imunologia , Animais , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Citocinas/imunologia , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-1/genética , Interleucina-1/metabolismo , Micoses/metabolismo , Micoses/microbiologia , Viroses/metabolismo , Viroses/virologia
4.
Biochem Soc Trans ; 47(6): 1581-1595, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31769472

RESUMO

Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene are associated with familial and sporadic cases of Parkinson's disease but are also found in immune-related disorders such as inflammatory bowel disease, tuberculosis and leprosy. LRRK2 is highly expressed in immune cells and has been functionally linked to pathways pertinent to immune cell function, such as cytokine release, autophagy and phagocytosis. Here, we examine the current understanding of the role of LRRK2 kinase activity in pathway regulation in immune cells, drawing upon data from multiple diseases associated with LRRK2 to highlight the pleiotropic effects of LRRK2 in different cell types. We discuss the role of the bona fide LRRK2 substrate, Rab GTPases, in LRRK2 pathway regulation as well as downstream events in the autophagy and inflammatory pathways.


Assuntos
Sistema Imunitário/fisiologia , Inflamação/fisiopatologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Animais , Humanos , Inflamação/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação
5.
PLoS Negl Trop Dis ; 13(9): e0007368, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31504035

RESUMO

Up to 50% of patients with the multibacillary form of leprosy are expected to develop acute systemic inflammatory episodes known as type 2 reactions (T2R), thus aggravating their clinical status. Thalidomide rapidly improves T2R symptoms. But, due to its restricted use worldwide, novel alternative therapies are urgently needed. The T2R triggering mechanisms and immune-inflammatory pathways involved in its pathology remain ill defined. In a recent report, we defined the recognition of nucleic acids by TLR9 as a major innate immunity pathway that is activated during T2R. DNA recognition has been described as a major inflammatory pathway in several autoimmune diseases, and neutrophil DNA extracellular traps (NETs) have been shown to be a prime source of endogenous DNA. Considering that neutrophil abundance is a marked characteristic of T2R lesions, the objective of this study was to investigate NETs production in T2R patients based on the hypothesis that the excessive NETs formation would play a major role in T2R pathogenesis. Abundant NETs were found in T2R skin lesions, and increased spontaneous NETs formation was observed in T2R peripheral neutrophils. Both the M. leprae whole-cell sonicate and the CpG-Hlp complex, mimicking a mycobacterial TLR9 ligand, were able to induce NETs production in vitro. Moreover, TLR9 expression was shown to be higher in T2R neutrophils, suggesting that DNA recognition via TLR9 may be one of the pathways triggering this process during T2R. Finally, treatment of T2R patients with thalidomide for 7 consecutive days resulted in a decrease in all of the evaluated in vivo and ex vivo NETosis parameters. Altogether, our findings shed light on the pathogenesis of T2R, which, it is hoped, will contribute to the emergence of novel alternative therapies and the identification of prognostic reactional markers in the near future.


Assuntos
Armadilhas Extracelulares/imunologia , Imunidade Inata , Hanseníase/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Autoimunes/imunologia , Doenças Autoimunes/microbiologia , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Hanseníase/tratamento farmacológico , Hanseníase/patologia , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae/imunologia , Mycobacterium leprae/patogenicidade , Neutrófilos/patologia , Talidomida/administração & dosagem , Talidomida/uso terapêutico
6.
Am J Phys Anthropol ; 162(1): 143-156, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27704524

RESUMO

It is possible that during long lasting chronic infections such as tuberculosis (TB) and leprosy individuals who generate a stronger immune response will produce a chronic shift in the systemic levels of inflammatory proteins. Consequently, the systemic immunological shift could affect inflammatory responses against other persistent pathogens such as Porphyromonas gingivalis associated with periodontal disease (PD). OBJECTIVE: To determine if in vitro exposure to Mycobacterium tuberculosis or M. leprae lysates impacts subsequent immune responses to P. gingivalis; and to propose a new dialogue between experimental immunology and paleopathology. MATERIAL AND METHODS: We sequentially (2 days protocol) exposed peripheral blood mononuclear cells (PBMCs) from healthy donors to bacterial lysates either from M. tuberculosis, or M. leprae, or P. gingivalis. After collecting all supernatants, we measured the expression of immune proteins TNFα and IFNγ using an enzyme-linked immunosorbent assay. RESULTS: Early exposure (day 1) of PBMCs to M. leprae or M. tuberculosis lysates induces an inflammatory shift detected by the increase of TNFα and IFNγ when the same cells are subsequently (day 2) exposed to oral pathogen P. gingivalis. DISCUSSION: By extrapolating these results, we suggest that chronic infections, such as TB and leprosy, could generate a systemic immunological shift that can affect other inflammatory processes such the one present in PD. We propose that the presence and severity of PD should be explored as a proxy for inflammatory status or competence when reconstructing the health profile in past populations.


Assuntos
Inflamação/imunologia , Inflamação/microbiologia , Hanseníase/microbiologia , Mycobacterium leprae/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/microbiologia , Arqueologia , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Leucócitos Mononucleares , Mycobacterium leprae/metabolismo , Mycobacterium tuberculosis/metabolismo , Porphyromonas gingivalis/imunologia
7.
Protein Cell ; 8(1): 55-66, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27830463

RESUMO

The innate immune system is critical for clearing infection, and is tightly regulated to avert excessive tissue damage. Nod1/2-Rip2 signaling, which is essential for initiating the innate immune response to bacterial infection and ER stress, is subject to many regulatory mechanisms. In this study, we found that LRRK2, encoded by a gene implicated in Crohn's disease, leprosy and familial Parkinson's disease, modulates the strength of Nod1/2-Rip2 signaling by enhancing Rip2 phosphorylation. LRRK2 deficiency markedly reduces cytokine production in macrophages upon Nod2 activation by muramyl dipeptide (MDP), Nod1 activation by D-gamma-Glu-meso-diaminopimelic acid (iE-DAP) or ER stress. Our biochemical study shows that the presence of LRRK2 is necessary for optimal phosphorylation of Rip2 upon Nod2 activation. Therefore, this study reveals that LRRK2 is a new positive regulator of Rip2 and promotes inflammatory cytokine induction through the Nod1/2-Rip2 pathway.


Assuntos
Citocinas/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Transdução de Sinais/imunologia , Animais , Citocinas/genética , Células HEK293 , Humanos , Imunidade Inata/genética , Inflamação/genética , Inflamação/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Fosforilação/genética , Fosforilação/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/genética
8.
Med Hypotheses ; 94: 112-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27515215

RESUMO

Studies have reported a wide range of inflammatory responses in the nerve, skin and plasma of leprosy patients. The expression levels of each biomolecule was individualistic, however could be categorized as high and low based on their statistical mean level. Here we report for the first time, expression of a set of biomolecules relating with each other in a defined proportion. The hypothesis of this paper is that the segregation of high and low combinations of a set of biomolecules follows either classical Mendelian dihybrid ratio or epistatic ratios. This hypothesis was tested for 17 molecules in three tissues; nerve, skin and plasma and were confirmed to interact in 9:7, 9:3:4, 12:3:1, 13:3, 15:1 epistatic proportions. These findings suggest that there could be a significant role of networking of molecules in defined epistatic proportions and could be important in pathophysiology of peripheral nerve.


Assuntos
Epistasia Genética , Inflamação/genética , Hanseníase/patologia , Algoritmos , Antígenos de Bactérias/imunologia , Genes Recessivos , Humanos , Inflamação/imunologia , Hanseníase/genética , Hanseníase/imunologia , Modelos Genéticos , Modelos Estatísticos , Neurônios/metabolismo , Nervos Periféricos/fisiopatologia , Fenótipo , Plasma/metabolismo , Estudos Retrospectivos , Pele/metabolismo , Resultado do Tratamento
9.
J Infect ; 71(4): 413-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26092350

RESUMO

Melanin is a canonical and major defense molecule in invertebrates but its role in mammalian immunity remains unexplored. In contrast, several recent studies have highlighted the emerging innate immune activities of human melanin-producing cells which can sense and respond to bacterial and viral infections. Indeed, the skin is a major portal of entry for pathogens such as arboviruses (Chikungunya, Dengue) and bacteria (mycobacterium leprae, Leptospira spirochetes). Melanocytes of the epidermis could contribute to the phagocytosis of these invading pathogens and to present antigens to competent immune cells. Melanocytes are known to produce key cytokines such as IL-1ß, IL6 and TNF-α as well as chemokines. These molecules will subsequently alert macrophages, neutrophils, fibroblasts and keratinocytes through unique crosstalk mechanisms. The infection and the inflammatory responses will control melanocyte's immune and metabolic functions and could contribute to skin manifestations (rash, hyper or de-pigmentation, epidermolysis and psoriasis-like lesions). This review will address the potential role of melanocytes in immunity, inflammation and infection of the skin in health and diseases.


Assuntos
Infecções Bacterianas/imunologia , Dengue/imunologia , Inflamação/imunologia , Melanócitos/imunologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Citocinas/biossíntese , Citocinas/metabolismo , Dengue/prevenção & controle , Dengue/virologia , Humanos , Imunidade Inata , Melanócitos/metabolismo , Melanócitos/ultraestrutura , Pele/imunologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Arkh Patol ; 76(4): 39-44, 2014.
Artigo em Russo | MEDLINE | ID: mdl-25306624

RESUMO

Based on their studies and literature analysis, the authors offer a hypothesis for the adaptive pattern of chronic immune granulomatous inflammation occurring in infectious diseases that are characterized by the development of non-sterile immunity. The authors' proposed hypothesis holds that not every chronic inflammation is a manifestation of failing defenses of the body exposed to a damaging factor. By using tuberculosis and leprosy as an example, the authors show the insolvency of a number of existing notions of the pathogenesis and morphogenesis of epithelioid-cell and leprous granulomas. Thus, the authors consider that resident macrophages in tuberculosis maintain their function to kill mycobacteria; thereby the immune system obtains information on the antigenic determinants of the causative agents. At the same time, by consuming all hydrolases to kill mycobacteria, the macrophage fails to elaborate new lysosomes for the capacity of the pathogens to prevent them from forming. As a result, the lysosome-depleted macrophage transforms into an epithelioid cell that, maintaining phagocytic functions, loses its ability to kill the causative agents. It is this epithelioid cell where endocytobiosis takes place. These microorganisms destroy the epithelioid cell and fall out in the area of caseating granuloma necrosis at regular intervals. Some of them phagocytize epithelioid cells to maintain non-sterile immunity; the others are killed by inflammatory macrophages. The pathogenesis and morphogenesis of leprous granuloma, its tuberculous type in particular, proceed in a fundamentally similar way. Thus, non-sterile immunity required for tuberculosis, leprosy, and, possibly, other mycobacterioses is maintained.


Assuntos
Adaptação Psicológica , Granuloma/imunologia , Imunidade Inata , Inflamação/imunologia , Endocitose , Granuloma/complicações , Granuloma/patologia , Humanos , Inflamação/complicações , Inflamação/patologia , Lisossomos/imunologia , Lisossomos/patologia , Macrófagos/imunologia , Macrófagos/patologia
11.
Cell Reprogram ; 16(1): 9-17, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24279882

RESUMO

Recently, we showed a natural reprogramming process during infection with Mycobacterium leprae (ML), the causative organism of human leprosy. ML hijacks the notable plasticity of adult Schwann cells in the peripheral nervous system (PNS), bacteria's preferred nonimmune niche, to reprogram infected cells to progenitor/stem cell-like cells (pSLCs). Whereas ML appear to use this reprogramming process as a sophisticated bacterial strategy to spread infection to other tissues, understanding the mechanisms may shed new insights into the basic biology of cellular reprogramming and the development of new approaches for generating pSLC for therapeutic purposes as well as targeting bacterial infectious diseases at an early stage. Toward these goals, we extended our studies to identify other players that might be involved in this complex host cell reprogramming. Here we show that ML activates numerous immune-related genes mainly involved in innate immune responses and inflammation during early infection before downregulating Schwann cell lineage genes and reactivating developmental transcription factors. We validated these findings by demonstrating the ability of infected cells to secrete soluble immune factor proteins at early time points and their continued release during the course of reprogramming. By using time-lapse microscopy and a migration assay with reprogrammed Schwann cells (pSLCs) cultured with macrophages, we show that reprogrammed cells possess the ability to attract macrophages, providing evidence for a functional role of immune gene products during reprogramming. These findings suggest a potential role of innate immune response and the related signaling pathways in cellular reprogramming and the initiation of neuropathogenesis during ML infection.


Assuntos
Desdiferenciação Celular/imunologia , Regulação para Baixo/imunologia , Imunidade Inata , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Células de Schwann/imunologia , Animais , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Hanseníase/patologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos ICR , Células de Schwann/microbiologia , Células de Schwann/patologia
12.
J Immunol ; 189(7): 3404-10, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22933632

RESUMO

Heat shock proteins (HSPs), produced in response to stress, are suppressive in disease models. We previously showed that Mycobacterium leprae HSP65 prevented development of airway hyperresponsiveness and inflammation in mice. Our goal in this study was to define the mechanism responsible for the suppressive effects of HSP. In one in vivo approach, BALB/c mice were sensitized to OVA, followed by primary OVA challenges. Several weeks later, HSP65 was administered prior to a single, provocative secondary challenge. In a second in vivo approach, the secondary challenge was replaced by intratracheal instillation of allergen-pulsed bone marrow-derived dendritic cells (BMDCs). The in vitro effects of HSP65 on BMDCs were examined in coculture experiments with CD4(+) T cells. In vivo, HSP65 prevented the development of airway hyperresponsiveness and inflammation. Additionally, Th1 cytokine levels in bronchoalveolar lavage fluid were increased. In vitro, HSP65 induced Notch receptor ligand Delta1 expression on BMDCs, and HSP65-treated BMDCs skewed CD4(+) T cells to Th1 cytokine production. Thus, HSP65-induced effects on allergen-induced airway hyperresponsiveness and inflammation were associated with increased Delta1 expression on dendritic cells, modulation of dendritic cell function, and CD4(+) Th1 cytokine production.


Assuntos
Proteínas de Bactérias/fisiologia , Hiper-Reatividade Brônquica/patologia , Hiper-Reatividade Brônquica/prevenção & controle , Chaperonina 60/fisiologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Inflamação/prevenção & controle , Mycobacterium leprae/imunologia , Animais , Hiper-Reatividade Brônquica/imunologia , Células Cultivadas , Técnicas de Cocultura , Citocinas/biossíntese , Células Dendríticas/patologia , Modelos Animais de Doenças , Feminino , Inflamação/imunologia , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Células Th1/imunologia , Células Th1/microbiologia , Células Th1/patologia
13.
BMC Res Notes ; 5: 292, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22695124

RESUMO

BACKGROUND: Thalidomide is an anti-inflammatory and anti-angiogenic drug currently used for the treatment of several diseases, including erythema nodosum leprosum, which occurs in patients with lepromatous leprosy. In this research, we use DNA microarray analysis to identify the impact of thalidomide on gene expression responses in human cells after lipopolysaccharide (LPS) stimulation. We employed a two-stage framework. Initially, we identified 1584 altered genes in response to LPS. Modulation of this set of genes was then analyzed in the LPS stimulated cells treated with thalidomide. RESULTS: We identified 64 genes with altered expression induced by thalidomide using the rank product method. In addition, the lists of up-regulated and down-regulated genes were investigated by means of bioinformatics functional analysis, which allowed for the identification of biological processes affected by thalidomide. Confirmatory analysis was done in five of the identified genes using real time PCR. CONCLUSIONS: The results showed some genes that can further our understanding of the biological mechanisms in the action of thalidomide. Of the five genes evaluated with real time PCR, three were down regulated and two were up regulated confirming the initial results of the microarray analysis.


Assuntos
Anti-Inflamatórios/farmacologia , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Inflamação/tratamento farmacológico , Leucócitos Mononucleares/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Talidomida/farmacologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
14.
J Immunol ; 187(9): 4744-53, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21957139

RESUMO

During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5--two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators--during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1ß activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread.


Assuntos
Proteínas de Homeodomínio/metabolismo , Inflamassomos/imunologia , Inflamassomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium marinum/imunologia , Mycobacterium tuberculosis/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Morte Celular/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Camundongos , Mycobacterium marinum/patogenicidade , Mycobacterium tuberculosis/patogenicidade
15.
J Immunol ; 187(5): 2548-58, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21813774

RESUMO

The mechanisms responsible for nerve injury in leprosy need further elucidation. We recently demonstrated that the foamy phenotype of Mycobacterium leprae-infected Schwann cells (SCs) observed in nerves of multibacillary patients results from the capacity of M. leprae to induce and recruit lipid droplets (LDs; also known as lipid bodies) to bacterial-containing phagosomes. In this study, we analyzed the parameters that govern LD biogenesis by M. leprae in SCs and how this contributes to the innate immune response elicited by M. leprae. Our observations indicated that LD formation requires the uptake of live bacteria and depends on host cell cytoskeleton rearrangement and vesicular trafficking. TLR6 deletion, but not TLR2, completely abolished the induction of LDs by M. leprae, as well as inhibited the bacterial uptake in SCs. M. leprae-induced LD biogenesis correlated with increased PGE(2) and IL-10 secretion, as well as reduced IL-12 and NO production in M. leprae-infected SCs. Analysis of nerves from lepromatous leprosy patients showed colocalization of M. leprae, LDs, and cyclooxygenase-2 in SCs, indicating that LDs are sites for PGE(2) synthesis in vivo. LD biogenesis Inhibition by the fatty acid synthase inhibitor C-75 abolished the effect of M. leprae on SC production of immunoinflammatory mediators and enhanced the mycobacterial-killing ability of SCs. Altogether, our data indicated a critical role for TLR6-dependent signaling in M. leprae-SC interactions, favoring phagocytosis and subsequent signaling for induction of LD biogenesis in infected cells. Moreover, our observations reinforced the role of LDs favoring mycobacterial survival and persistence in the nerve. These findings give further support to a critical role for LDs in M. leprae pathogenesis in the nerve.


Assuntos
Hanseníase/patologia , Células de Schwann/microbiologia , Células de Schwann/patologia , Receptor 6 Toll-Like/imunologia , Animais , Humanos , Imuno-Histoquímica , Corpos de Inclusão/imunologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Hanseníase/imunologia , Metabolismo dos Lipídeos/fisiologia , Lipídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Mycobacterium leprae/imunologia , Células de Schwann/imunologia , Receptor 6 Toll-Like/metabolismo
16.
Neuroimmunomodulation ; 17(5): 287-97, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20407280

RESUMO

BACKGROUND: A DNA vaccine (pVAXhsp65) containing the gene of a heat-shock protein (hsp65) from Mycobacterium leprae showed high immunogenicity and protective efficacy against tuberculosis in BALB/c mice. A possible deleterious effect related to autoimmunity needed to be tested because hsp65 is highly homologous to the correspondent mammalian protein. In this investigation we tested the effect of a previous immunization with DNAhsp65 in the development of experimental autoimmune encephalomyelitis (EAE), a rat model of multiple sclerosis. METHODS: Female Lewis rats were immunized with 3 pVAXhsp65 doses by intramuscular route. Fifteen days after the last DNA dose the animals were evaluated for specific immunity or submitted to induction of EAE. Animals were evaluated daily for weight loss and clinical score, and euthanized during the recovery phase to assess the immune response and inflammatory infiltration at the central nervous system. RESULTS: Immunization with pVAXhsp65 induced a specific immune response characterized by production of IgG(2b) anti-hsp65 antibodies and IFN-gamma secretion. Previous immunization with pVAXhsp65 did not change EAE clinical manifestations (weight and clinical score). However, the vaccine clearly decreased brain and lumbar spinal cord inflammation. In addition, it downmodulated IFN-gamma and IL-10 production by peripheral lymphoid organs. CONCLUSION: Our data demonstrated that this vaccine does not trigger a deleterious effect on EAE development and also points to a potential protective effect.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/prevenção & controle , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Anticorpos Antibacterianos/biossíntese , Proteínas de Bactérias/imunologia , Chaperonina 60/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Imunoglobulina G/biossíntese , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Ratos , Ratos Endogâmicos Lew , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia
17.
J Infect Dis ; 201(4): 558-69, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20070238

RESUMO

Neutrophil recruitment is pivotal to the host defense against microbial infection, but it also contributes to the immunopathology of disease. We investigated the mechanism of neutrophil recruitment in human infectious disease by means of bioinformatic pathways analysis of the gene expression profiles in the skin lesions of leprosy. In erythema nodosum leprosum (ENL), which occurs in patients with lepromatous leprosy and is characterized by neutrophil infiltration in lesions, the most overrepresented biological functional group was cell movement, including E-selectin, which was coordinately regulated with interleukin 1beta (IL-1beta). In vitro activation of Toll-like receptor 2 (TLR2), up-regulated in ENL lesions, triggered induction of IL-1beta, which together with interferon gamma induced E-selectin expression on and neutrophil adhesion to endothelial cells. Thalidomide, an effective treatment for ENL, inhibited this neutrophil recruitment pathway. The gene expression profile of ENL lesions comprised an integrated pathway of TLR2 and Fc receptor activation, neutrophil migration, and inflammation, providing insight into mechanisms of neutrophil recruitment in human infectious disease.


Assuntos
Hanseníase/imunologia , Infiltração de Neutrófilos/imunologia , Análise por Conglomerados , Selectina E/biossíntese , Selectina E/genética , Selectina E/imunologia , Perfilação da Expressão Gênica , Humanos , Inflamação/imunologia , Interferon gama/biossíntese , Interferon gama/genética , Interferon gama/imunologia , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Hanseníase/genética , Modelos Biológicos , Mycobacterium lepraemurium/isolamento & purificação , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Fc/biossíntese , Receptores Fc/genética , Receptores Fc/imunologia , Transdução de Sinais/efeitos dos fármacos , Pele/imunologia , Pele/microbiologia , Talidomida/farmacologia , Receptor 2 Toll-Like/biossíntese , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia
18.
Lancet Infect Dis ; 9(11): 699-710, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19850228

RESUMO

The necrotising skin infection Buruli ulcer is at present the third most common human mycobacteriosis worldwide, after tuberculosis and leprosy. Buruli ulcer is an emergent disease that is predominantly found in humid tropical regions. There is no vaccine against Buruli ulcer and its treatment is difficult. In addition to the huge social effect, Buruli ulcer is of great scientific interest because of the unique characteristics of its causative organism, Mycobacterium ulcerans. This pathogen is genetically very close to the typical intracellular parasites Mycobacterium marinum and Mycobacterium tuberculosis. We review data supporting the interpretation that M ulcerans has the essential hallmarks of an intracellular parasite, producing infections associated with immunologically relevant inflammatory responses, cell-mediated immunity, and delayed-type hypersensitivity. This interpretation judges that whereas M ulcerans behaves like the other pathogenic mycobacteria, it represents an extreme in the biodiversity of this family of pathogens because of its higher cytotoxicity due to the secretion of the exotoxin mycolactone. The acceptance of the interpretation that Buruli ulcer is caused by an intracellular parasite has relevant prophylactic and therapeutic implications, rather than representing the mere attribution of a label with academic interest, because it prompts the development of vaccines that boost cell-mediated immunity and the use of chemotherapeutic protocols that include intracellularly active antibiotics.


Assuntos
Úlcera de Buruli/microbiologia , Úlcera de Buruli/patologia , Mycobacterium ulcerans/patogenicidade , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/toxicidade , Úlcera de Buruli/imunologia , Humanos , Hipersensibilidade Tardia , Imunidade Celular , Inflamação/imunologia , Inflamação/patologia , Macrolídeos
19.
Infect Immun ; 77(12): 5623-30, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19786561

RESUMO

Leprosy elimination has been a goal of the WHO for the past 15 years. Widespread BCG vaccination and multidrug therapy have dramatically reduced worldwide leprosy prevalence, but new case detection rates have remained relatively constant. These data suggest that additional control strategies, such as a subunit vaccine, are required to block transmission and to improve leprosy control. We recently identified several Mycobacterium leprae antigens that stimulate gamma interferon (IFN-gamma) secretion upon incubation with blood from paucibacillary leprosy patients, a group who limit M. leprae growth and dissemination. In this study, we demonstrate that M. leprae-specific mouse T-cell lines recognize several of these antigens, with the ML0276 protein stimulating the most IFN-gamma secretion. We then examined if the ML0276 protein could be used in a subunit vaccine to provide protection against experimental M. leprae infection. Our data demonstrate that combining ML0276 with either a Toll-like receptor 4 (TLR4) (EM005), TLR7 (imiquimod), or TLR9 (CpG DNA) agonist during immunization induces Th1 responses that limit local inflammation upon experimental M. leprae infection. Our data indicate that only the ML0276/EM005 regimen is able to elicit a response that is transferable to recipient mice. Despite the potent Th1 response induced by this regimen, it could not provide protection in terms of limiting bacterial growth. We conclude that EM005 is the most potent adjuvant for stimulating a Th1 response and indicate that while a subunit vaccine containing the ML0276 protein may be useful for the prevention of immune pathology during leprosy, it will not control bacterial burden and is therefore unlikely to interrupt disease transmission.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Inflamação/prevenção & controle , Hanseníase/imunologia , Hanseníase/prevenção & controle , Mycobacterium leprae/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Contagem de Colônia Microbiana , Feminino , Inflamação/imunologia , Interferon gama/metabolismo , Hanseníase/patologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Receptores Toll-Like/agonistas , Vacinas de Subunidades Antigênicas/imunologia
20.
Infect Immun ; 75(11): 5290-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17724073

RESUMO

Leprosy is caused by infection with Mycobacterium leprae. The immune response of leprosy patients can be highly diverse, ranging from strong cellular responses accompanied by an apparent deficit of M. leprae-specific antibodies to strong humoral responses with a deficit of cell-mediated responses. Leprosy takes many years to manifest, and this has precluded analyses of disease and immune response development in infected humans. In an attempt to better define development of the immune response during leprosy we have developed an M. leprae ear infection model. Intradermal inoculation of M. leprae into the ear supported not only infection but also the development of a chronic inflammatory response. The inflammatory response was localized, comprising a T-cell infiltration into the ear and congestion of cells in the draining lymph nodes. The development of local chronic inflammation was prevented by rifampin treatment. Importantly, and in contrast to subcutaneous M. leprae footpad infection, systemic M. leprae-specific gamma interferon and antibody responses were detected following intradermal ear infection. These results indicate the utility of intradermal ear infection for both induction and understanding of the immune response during M. leprae infection and the identification or testing of new leprosy treatments.


Assuntos
Formação de Anticorpos , Modelos Animais de Doenças , Orelha/microbiologia , Imunidade Celular , Mycobacterium leprae/imunologia , Animais , Anticorpos Antibacterianos/sangue , Feminino , Inflamação/imunologia , Inflamação/patologia , Injeções Intradérmicas , Interferon gama/biossíntese , Linfonodos/imunologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA