Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076568

RESUMO

The ovine choroid plexus (ChP) expresses the long isoform of the leptin receptor, which makes this structure a potential target for leptin action. In sheep, leptin concentration in plasma is higher during long days (LD) than short days (SD). This study evaluates the influence a of photoperiod on leptin impact on the gene expression of Toll-like receptor 4 (TLR4), proinflammatory cytokines (IL1B, IL6), their receptors (IL1R1, IL1R2, ILRN, IL6R, IL6ST) and inflammasome components necessary for pro-IL-1ß activation (NLRP3, PYCARD, CASP1), chemokine (CCL2), leptin receptor isoforms (LEPRa, LEPRb) and a suppressor of cytokine signalling (SOCS3) in the ChP of ewes treated or not with lipopolysaccharide (LPS). Studies were conducted on adult female sheep divided into four groups (n = 6 in each): control, leptin (20 µg/kg), LPS (400 ng/kg), and LPS and leptin injected under SD and LD photoperiods. The leptin alone did not affect the gene expression but in co-treatment with LPS increased (p < 0.05) IL1B but only during SD, and SOCS3, IL1R2, IL1RN, IL6ST and CCL2 only during LD, and decreased (p < 0.05) the IL1R1 expression only during SD photoperiod. This indicates that the immunomodulatory action of leptin on the ChP is manifested only under the LPS challenge and is photoperiodically dependent.


Assuntos
Plexo Corióideo/metabolismo , Inflamassomos/metabolismo , Leptina/sangue , Fotoperíodo , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Plexo Corióideo/efeitos dos fármacos , Feminino , Inflamassomos/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Ovinos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
2.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824985

RESUMO

The aim of this study is to examine the use of an inflammasome competitor as a preventative agent. Coronaviruses have zoonotic potential due to the adaptability of their S protein to bind receptors of other species, most notably demonstrated by SARS-CoV. The binding of SARS-CoV-2 to TLR (Toll-like receptor) causes the release of pro-IL-1ß, which is cleaved by caspase-1, followed by the formation and activation of the inflammasome, which is a mediator of lung inflammation, fever, and fibrosis. The NLRP3 (NACHT, LRR and PYD domains-containing protein 3) inflammasome is implicated in a variety of human diseases including Alzheimer's disease (AD), prion diseases, type 2 diabetes, and numerous infectious diseases. By examining the use of 4,4'-diaminodiphenyl sulfone (DDS) in the treatment of patients with Hansen's disease, also diagnosed as Alzheimer's disease, this study demonstrates the diverse mechanisms involved in the activation of inflammasomes. TLRs, due to genetic polymorphisms, can alter the immune response to a wide variety of microbial ligands, including viruses. In particular, TLR2Arg677Trp was reported to be exclusively present in Korean patients with lepromatous leprosy (LL). Previously, mutation of the intracellular domain of TLR2 has demonstrated its role in determining the susceptibility to LL, though LL was successfully treated using a combination of DDS with rifampicin and clofazimine. Of the three tested antibiotics, DDS was effective in the molecular regulation of NLRP3 inflammasome activators that are important in mild cognitive impairment (MCI), Parkinson's disease (PD), and AD. The specific targeting of NLRP3 itself or up-/downstream factors of the NLRP3 inflammasome by DDS may be responsible for its observed preventive effects, functioning as a competitor.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Dapsona/farmacologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia Viral/tratamento farmacológico , Doença de Alzheimer/patologia , COVID-19 , Clofazimina/farmacologia , Disfunção Cognitiva/patologia , Humanos , Interleucina-1beta/metabolismo , Hanseníase/tratamento farmacológico , Hanseníase/genética , Pandemias , Transtornos Parkinsonianos/patologia , Rifampina/farmacologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Receptor 2 Toll-Like/genética
3.
Mem Inst Oswaldo Cruz ; 115: e190324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32130367

RESUMO

BACKGROUND: Leprosy is an infectious-contagious disease caused by Mycobacterium leprae that remain endemic in 105 countries. This neglected disease has a wide range of clinical and histopathological manifestations that are related to the host inflammatory and immune responses. More recently, the inflammasome has assumed a relevant role in the inflammatory response against microbiological agents. However, the involvement of inflammasome in leprosy remains poorly understood. OBJECTIVES: The aim is to associate biomarkers of inflammasome with the different immunopathological forms of leprosy. METHODS: We performed an observational, cross-sectional, and comparative study of the immunophenotypic expression of inflammasome-associated proteins in immunopathological forms of leprosy of 99 skin lesion samples by immunohistochemistry. The intensity and percentage of NLRP3, Caspase-1, Caspases-4/5, interleukin-1ß and interleukin-18 immunoreactivities in the inflammatory infiltrate of skin biopsies were evaluated. FINDINGS: Strong expression of NLRP3 and inflammatory Caspases-4/5 were observed in lepromatous leprosy (lepromatous pole). In addition, were observed low expression of caspase-1, interleukin-1ß, and interleukin-18 in tuberculoid and lepromatous leprosy. The interpolar or borderline form showed immunophenotype predominantly similar to the lepromatous pole. MAIN CONCLUSIONS: Our results demonstrate that the NLRP3 inflammasome is inactive in leprosy, suggesting immune evasion of M. leprae.


Assuntos
Evasão da Resposta Imune/imunologia , Inflamassomos/metabolismo , Hanseníase/imunologia , Hanseníase/metabolismo , Mycobacterium leprae/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estudos Transversais , Humanos , Imuno-Histoquímica , Hanseníase/patologia
4.
Mem. Inst. Oswaldo Cruz ; 115: e190324, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1091245

RESUMO

BACKGROUND Leprosy is an infectious-contagious disease caused by Mycobacterium leprae that remain endemic in 105 countries. This neglected disease has a wide range of clinical and histopathological manifestations that are related to the host inflammatory and immune responses. More recently, the inflammasome has assumed a relevant role in the inflammatory response against microbiological agents. However, the involvement of inflammasome in leprosy remains poorly understood. OBJECTIVES The aim is to associate biomarkers of inflammasome with the different immunopathological forms of leprosy. METHODS We performed an observational, cross-sectional, and comparative study of the immunophenotypic expression of inflammasome-associated proteins in immunopathological forms of leprosy of 99 skin lesion samples by immunohistochemistry. The intensity and percentage of NLRP3, Caspase-1, Caspases-4/5, interleukin-1β and interleukin-18 immunoreactivities in the inflammatory infiltrate of skin biopsies were evaluated. FINDINGS Strong expression of NLRP3 and inflammatory Caspases-4/5 were observed in lepromatous leprosy (lepromatous pole). In addition, were observed low expression of caspase-1, interleukin-1β, and interleukin-18 in tuberculoid and lepromatous leprosy. The interpolar or borderline form showed immunophenotype predominantly similar to the lepromatous pole. MAIN CONCLUSIONS Our results demonstrate that the NLRP3 inflammasome is inactive in leprosy, suggesting immune evasion of M. leprae.


Assuntos
Humanos , Evasão da Resposta Imune/imunologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hanseníase/imunologia , Hanseníase/metabolismo , Mycobacterium leprae/imunologia , Imuno-Histoquímica , Estudos Transversais , Hanseníase/patologia
5.
Front Immunol ; 9: 1223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915584

RESUMO

Leprosy reactions are responsible for incapacities in leprosy and represent the major cause of permanent neuropathy. The identification of biomarkers able to identify patients more prone to develop reaction could contribute to adequate clinical management and the prevention of disability. Reversal reaction may occur in unstable borderline patients and also in lepromatous patients. To identify biomarker signature profiles related with the reversal reaction onset, multibacillary patients were recruited and classified accordingly the occurrence or not of reversal reaction during or after multidrugtherapy. Analysis of skin lesion cells at diagnosis of multibacillary leprosy demonstrated that in the group that developed reaction (T1R) in the future there was a downregulation of autophagy associated with the overexpression of TLR2 and MLST8. The autophagy impairment in T1R group was associated with increased expression of NLRP3, caspase-1 (p10) and IL-1ß production. In addition, analysis of IL-1ß production in serum from multibacillary patients demonstrated that patients who developed reversal reaction have significantly increased concentrations of IL-1ß at diagnosis, suggesting that the pattern of innate immune responses could predict the reactional episode outcome. In vitro analysis demonstrated that the blockade of autophagy with 3-methyladenine (3-MA) in Mycobacterium leprae-stimulated human primary monocytes increased the assembly of NLRP3 specks assembly, and it was associated with an increase of IL-1ß and IL-6 production. Together, our data suggest an important role for autophagy in multibacillary leprosy patients to avoid exacerbated inflammasome activation and the onset of reversal reaction.


Assuntos
Autofagia , Inflamassomos/metabolismo , Hanseníase Multibacilar/etiologia , Hanseníase Multibacilar/metabolismo , Adulto , Idoso , Biomarcadores , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Interleucina-1beta/metabolismo , Hanseníase Multibacilar/patologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/microbiologia , Mycobacterium leprae/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Transcriptoma
6.
PLoS One ; 11(12): e0168276, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27959965

RESUMO

BACKGROUND: Genetic variation in the Laccase (multicopper oxidoreductase) domain-containing 1 (LACC1) gene has been shown to affect the risk of Crohn's disease, leprosy and, more recently, ulcerative colitis and juvenile idiopathic arthritis. LACC1 function appears to promote fatty-acid oxidation, with concomitant inflammasome activation, reactive oxygen species production, and anti-bacterial responses in macrophages. We sought to contribute to elucidating LACC1 biological function by extensive characterization of its expression in human tissues and cells, and through preliminary analyses of the regulatory mechanisms driving such expression. METHODS: We implemented Western blot, quantitative real-time PCR, immunofluorescence microscopy, and flow cytometry analyses to investigate fatty acid metabolism-immune nexus (FAMIN; the LACC1 encoded protein) expression in subcellular compartments, cell lines and relevant human tissues. Gene-set enrichment analyses were performed to initially investigate modulatory mechanisms of LACC1 expression. A small-interference RNA knockdown in vitro model system was used to study the effect of FAMIN depletion on peroxisome function. RESULTS: FAMIN expression was detected in macrophage-differentiated THP-1 cells and several human tissues, being highest in neutrophils, monocytes/macrophages, myeloid and plasmacytoid dendritic cells among peripheral blood cells. Subcellular co-localization was exclusively confined to peroxisomes, with some additional positivity for organelle endomembrane structures. LACC1 co-expression signatures were enriched for genes involved in peroxisome proliferator-activated receptors (PPAR) signaling pathways, and PPAR ligands downregulated FAMIN expression in in vitro model systems. CONCLUSION: FAMIN is a peroxisome-associated protein with primary role(s) in macrophages and other immune cells, where its metabolic functions may be modulated by PPAR signaling events. However, the precise molecular mechanisms through which FAMIN exerts its biological effects in immune cells remain to be elucidated.


Assuntos
Doença de Crohn/genética , Predisposição Genética para Doença , Proteínas/genética , Diferenciação Celular , Linhagem Celular Tumoral , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Células HeLa , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Leucócitos Mononucleares/citologia , Ligantes , Macrófagos/citologia , Macrófagos/metabolismo , Oxigênio/química , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
7.
Nat Immunol ; 17(9): 1046-56, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27478939

RESUMO

Single-nucleotide variations in C13orf31 (LACC1) that encode p.C284R and p.I254V in a protein of unknown function (called 'FAMIN' here) are associated with increased risk for systemic juvenile idiopathic arthritis, leprosy and Crohn's disease. Here we set out to identify the biological mechanism affected by these coding variations. FAMIN formed a complex with fatty acid synthase (FASN) on peroxisomes and promoted flux through de novo lipogenesis to concomitantly drive high levels of fatty-acid oxidation (FAO) and glycolysis and, consequently, ATP regeneration. FAMIN-dependent FAO controlled inflammasome activation, mitochondrial and NADPH-oxidase-dependent production of reactive oxygen species (ROS), and the bactericidal activity of macrophages. As p.I254V and p.C284R resulted in diminished function and loss of function, respectively, FAMIN determined resilience to endotoxin shock. Thus, we have identified a central regulator of the metabolic function and bioenergetic state of macrophages that is under evolutionary selection and determines the risk of inflammatory and infectious disease.


Assuntos
Artrite Juvenil/genética , Doença de Crohn/genética , Infecções/genética , Hanseníase/genética , Macrófagos/imunologia , Proteínas/genética , Choque Séptico/genética , Trifosfato de Adenosina/metabolismo , Animais , Bacteriólise , Células Cultivadas , Metabolismo Energético , Ácido Graxo Sintase Tipo I/metabolismo , Predisposição Genética para Doença , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/metabolismo , Oxirredução , Polimorfismo de Nucleotídeo Único , Risco
8.
J Immunol ; 187(9): 4744-53, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21957139

RESUMO

During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5--two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators--during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1ß activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread.


Assuntos
Proteínas de Homeodomínio/metabolismo , Inflamassomos/imunologia , Inflamassomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium marinum/imunologia , Mycobacterium tuberculosis/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Morte Celular/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Camundongos , Mycobacterium marinum/patogenicidade , Mycobacterium tuberculosis/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA