Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Immunity ; 54(5): 856-858, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979584

RESUMO

Intestinal microbiome perturbation characterizes Crohn's disease (CD), though specific contributors to pathophysiology remain elusive. In a recent issue of Science, Jain et al. show that Debaryomyces hansenii impairs intestinal healing in mice via effects on type I interferon signaling and chemokine CCL5 expression in macrophages and that it is also prevalent in the inflamed mucosa of CD patients.


Assuntos
Doença de Crohn/imunologia , Doença de Crohn/microbiologia , Mucosa Intestinal/microbiologia , Cicatrização/imunologia , Animais , Quimiocina CCL5/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Interferon Tipo I/imunologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Camundongos , Micoses/imunologia , Micoses/microbiologia , Saccharomycetales/imunologia , Transdução de Sinais/imunologia
2.
PLoS Negl Trop Dis ; 13(7): e0007589, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31344041

RESUMO

The initial interaction between a microbial pathogen and the host immune response influences the outcome of the battle between the host and the foreign invader. Leprosy, caused by the obligate intracellular pathogen Mycobacterium leprae, provides a model to study relevant human immune responses. Previous studies have adopted a targeted approach to investigate host response to M. leprae infection, focusing on the induction of specific molecules and pathways. By measuring the host transcriptome triggered by M. leprae infection of human macrophages, we were able to detect a host gene signature 24-48 hours after infection characterized by specific innate immune pathways involving the cell fate mechanisms autophagy and apoptosis. The top upstream regulator in the M. leprae-induced gene signature was NUPR1, which is found in the M. leprae-induced cell fate pathways. The induction of NUPR1 by M. leprae was dependent on the production of the type I interferon (IFN), IFN-ß. Furthermore, NUPR1 mRNA and protein were upregulated in the skin lesions from patients with the multibacillary form of leprosy. Together, these data indicate that M. leprae induces a cell fate program which includes NUPR1 as part of the host response in the progressive form of leprosy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hanseníase/genética , Macrófagos/microbiologia , Mycobacterium leprae/imunologia , Proteínas de Neoplasias/genética , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Interferon Tipo I/imunologia , Hanseníase/imunologia , Hanseníase/microbiologia , Macrófagos/imunologia , Transdução de Sinais
3.
Front Immunol ; 9: 806, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755459

RESUMO

For those with leprosy, the extent of host infection by Mycobacterium leprae and the progression of the disease depend on the ability of mycobacteria to shape a safe environment for its replication during early interaction with host cells. Thus, variations in key genes such as those in pattern recognition receptors (NOD2 and TLR1), autophagic flux (PARK2, LRRK2, and RIPK2), effector immune cytokines (TNF and IL12), and environmental factors, such as nutrition, have been described as critical determinants for infection and disease progression. While parkin-mediated autophagy is observed as being essential for mycobacterial clearance, leprosy patients present a prominent activation of the type I IFN pathway and its downstream genes, including OASL, CCL2, and IL10. Activation of this host response is related to a permissive phenotype through the suppression of IFN-γ response and negative regulation of autophagy. Finally, modulation of host metabolism was observed during mycobacterial infection. Both changes in lipid and glucose homeostasis contribute to the persistence of mycobacteria in the host. M. leprae-infected cells have an increased glucose uptake, nicotinamide adenine dinucleotide phosphate generation by pentose phosphate pathways, and downregulation of mitochondrial activity. In this review, we discussed new pathways involved in the early mycobacteria-host interaction that regulate innate immune pathways or metabolism and could be new targets to host therapy strategies.


Assuntos
Autofagia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Interferon Tipo I/imunologia , Hanseníase/imunologia , Citocinas/imunologia , Progressão da Doença , Glucose/metabolismo , Humanos , Interferon Tipo I/genética , Hanseníase/metabolismo , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/terapia , Mycobacterium leprae/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Transdução de Sinais
4.
Int J Lepr Other Mycobact Dis ; 58(2): 334-41, 1990 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-2376683

RESUMO

We have assessed the natural killer (NK) cell-mediated cytotoxicity and antibody-dependent cellular cytotoxicity (ADCC) in the peripheral blood lymphocytes (PBL) from untreated lepromatous leprosy (LL) patients, LL patients on multidrug therapy (MDT) with favorable responses (MDT-R), LL patients clinically classified as nonresponders to MDT (MDT-NR), treated tuberculoid leprosy (TT) patients, and healthy donors. NK cytotoxicity was modulated by treating the PBL with recombinant interferon-alpha (IFN-alpha) and recombinant interleukin-2 (IL-2). The mean percent NK cytotoxicity of untreated LL patients (15 +/- 3), treated MDT-R patients (20 +/- 4), and treated MDT-NR patients (12 +/- 4) was significantly lower than that of TT patients (39 +/- 6) and healthy donors (37 +/- 5). Treatment of effectors with IL-2 or IFN-alpha enhanced NK cytotoxicity in 5 of 6 untreated LL patients, 6 of 6 treated MDT-R LL patients, 4 of 5 and 3 of 5 treated MDT-NR LL patients, respectively, and 5 of 8 and 3 of 8 treated TT patients, respectively. Although PBL from TT patients showed initial NK activity comparable to that of healthy donors, fewer TT patients showed modulation of NK activity by IL-2, and IFN-alpha to a lesser extent. The ADCC activity was lower in untreated LL patients compared to treated patients, while TT patients had normal ADCC activity. The results indicate that although LL patients show lowered spontaneous cytotoxicity, it can be modulated favorably by lymphokines.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Células Matadoras Naturais/imunologia , Hanseníase Virchowiana/imunologia , Hanseníase Tuberculoide/imunologia , Humanos , Imunidade Celular , Interferon Tipo I/imunologia , Interleucina-2/imunologia , Linfócitos/imunologia , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA