Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Front Immunol ; 13: 961405, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389696

RESUMO

Mycobacterium leprae is a kind of disease-causing bacteria and results in leprosy in human. Gamma delta (γδ) T cell is a T-cell subset that is presented in both human dermis and epidermis. These cells bridge innate and adaptive immune responses and play critical roles in regulating anti-microbial defense, wound healing, and skin inflammation. Here, we investigated skin resident γδ T cells in patients with leprosy. Our data showed that γδ T cells significantly accumulated in skin lesions of leprosy patients with tuberculoid (TT) form. IL-23 can predominantly stimulate dermal γδ T cells to produce interleukin 17 (IL-17), a cytokine which may lead to disease protection. These γδ T cells expressed a specific set of surface molecules, and majority of these cells were Vδ1+. Also, IL-23 can stimulate the expansion of dermal γδ T cells expansion. Moreover, our results revealed that the transcription factor RORγt was responsible for IL-17A expression in leprosy lesion. Therefore, these data indicated that IL-23-responsive dermal γδ T cells were the major resource of IL-17A production in the skin and could be a potential target in the treatment of leprosy.


Assuntos
Linfócitos Intraepiteliais , Hanseníase , Humanos , Interleucina-17/metabolismo , Mycobacterium leprae , Linfócitos Intraepiteliais/metabolismo , Interleucina-23
2.
Clin Exp Pharmacol Physiol ; 49(9): 1002-1009, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35706059

RESUMO

Leprosy is an infectious disease caused by non-cultivable bacteria Mycobacterium leprae. Th17 cells play vital roles during pathogenesis of leprosy reactions and IL-23 is involved in Th17 cell differentiation. Although previous studies have reported the participation of IL-23 in leprosy patients in peripheral blood, the role of this cytokine in skin has not yet been described for the disease. In this study, we first evaluated IL-23 expression in the skin of patients with leprosy. Data showed that in keratinocytes, endothelial cells, and macrophages, IL-23 expression was markedly higher in patients compared to that in the normal skin controls. Also, leprosy patients presented higher percentage of IL-17A-producing IL-23R + CD4 T cells than healthy donors. IL-23R blocking induced markedly downregulated IL-17A secretion in leprosy patients but not in healthy donors. Furthermore, TGF-ß expression was significantly elevated after IL-23R blocking. Overall, this study establishes that Th17 cells produce IL-17A in an IL-23 dependent manner in the skin of leprosy patients and provides more focused treatment strategies for Mycobacterium leprae.


Assuntos
Hanseníase , Células Th17 , Células Endoteliais/metabolismo , Humanos , Interleucina-17/metabolismo , Interleucina-23 , Subunidade p19 da Interleucina-23 , Hanseníase/microbiologia , Hanseníase/patologia , Mycobacterium leprae/metabolismo , Células Th17/metabolismo
3.
Cytokine ; 152: 155821, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35151928

RESUMO

Leprosy type 1 reaction (T1R) is a cell-mediated inflammatory reaction which involves skin and peripheral nerves in leprosy. Lesions with T1R have higher production of IL-17 cytokine from CD4+ T cells along with lower TGF-ß producing FOXP3+ CD4+ Tregs. IL-21 is an important cytokine that promotes the development and stability of Th17 cells in an autocrine manner. It can play an important role in the pathogenesis of T1R in leprosy. However, the mechanism by which IL-21 influences the pathogenic progress of leprosy T1R remains poorly understood. In the present study, we evaluated the expression of IL-21 cytokine in skin lesions of both non-reactional (NR) and T1R via immuno-histochemistry and quantitative PCR (qPCR). Further, expression of various genes (IL-17A, IL-17F, TGF-ß, FOXP3, RORC and IL-21) was also measured by qPCR in cultured cells. We also analyzed the secretion of various cytokines such as of IL-21, IL-17A/F and TGF-ß in the culture supernatants by ELISA. In addition, differentiation of Th17 and Treg cells were studied in PBMC cultures after stimulation with Mycobacterium leprae sonicated antigens and rIL-21 for 48 hrs and the phenotypes of Th17 and Tregs were determined by flowcytometric analysis. Our results clearly indicate that IL-21+T cells were significantly higher in both peripheral blood and skin lesions of T1R as compared to NR patients. Moreover, we observed that recombinant IL-21 cytokine inhibited TGF-ß producing Treg cells differentiation along with up-regulating Th17 cells under in-vitro conditions. The gene expression of IL-21 was significantly negatively correlated with Treg and positively correlated with Th17 cell markers in T1R patients. Our results suggested that IL-21 promotes T1R mediated inflammation via modulating the balance of Th17 and Treg cell populations.


Assuntos
Hipersensibilidade , Hanseníase , Citocinas , Fatores de Transcrição Forkhead , Humanos , Inflamação , Interleucina-17/metabolismo , Interleucinas , Leucócitos Mononucleares/metabolismo , Linfócitos T Reguladores , Células Th17 , Fator de Crescimento Transformador beta/metabolismo
4.
Sci Rep ; 10(1): 15143, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934336

RESUMO

Th17 cells play vital role during pathogenesis of leprosy reactions. Previously, we have reported that IL-23 is involved in Th17 cells differentiation. Subsequently, our group also showed that IL-6 induces Th17 cell differentiation along with TGF-ß in leprosy reactions. Here, we next asked the question that whether IL-6 or IL-23 induced Th17 cells are different in nature? In this study, Type 1 Reactions (T1R) showed significantly (p < 0.001) higher percentage of IL-17A producing CD4+IL6R+ T cells as compared to non-reaction (NR) patients. Furthermore, recombinant IL-6, IL-23 and TGF-ß promoted IL-17A secretion by CD4+IL6R+ T cells. Subsequently, IL-6R and IL-23R blocking experiments showed significantly (p < 0.002) down regulated IL-17A in T1R reaction as compared to NR leprosy patients. The present study for the first time establishes that pathogenic Th17 cells produce IL-17 in an IL-6 dependent manner in leprosy T1R reactions. Thus, present approaches that specifically target Th17 cells and/or the cytokines that promote their development, such as IL-6, TGF-ß and IL-23A may provide more focused treatment strategies for the management of Mycobacterium leprae and its reactions.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interleucina-6/metabolismo , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Receptores de Interleucina-6/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Adolescente , Adulto , Feminino , Humanos , Interleucina-17/imunologia , Interleucina-17/metabolismo , Hanseníase/metabolismo , Hanseníase/microbiologia , Hanseníase/patologia , Masculino , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem
5.
Cytokine ; 126: 154873, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31629113

RESUMO

Type 1 reactions (T1R) an inflammatory condition, of local skin patches in 30-40% leprosy patients during the course of MDT. IL-17A and IL-17F play an important role in regulating skin inflammation through neutrophils. In the present study, we have analyzed 18 of each T1R and Non-reactions (NR) patients through flow cytometry and qPCR. Interestingly we found that, CD3+CD4+ gated IL-17A+IL-17F+ cells were significantly high in T1R in both MLSA stimulated PBMCs and skin lesions as compared to NR leprosy patients. Hierarchical clustering analysis of gene expression showed that CXCL6, CXCL5, CCL20, CCL7, MMP13 and IL-17RB expression were significantly associated with IL-17A and IL-17F expression (Spearman r2 = 0.77 to 0.98), neutrophils and monocyte markers respectively. In this study, the inflammation noted in lesions of T1R is a different phenotype of Th17 which produce double positive IL-17A+IL17F+ and also contributes IL-17 producing neutrophils and thus would be useful for monitoring, diagnosis and treatment response before reactions episodes.


Assuntos
Citocinas/metabolismo , Interleucina-17/metabolismo , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Neutrófilos/metabolismo , Células Th17/metabolismo , Adulto , Complexo CD3/metabolismo , Antígenos CD4/metabolismo , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Quimiocina CXCL6/genética , Quimiocina CXCL6/metabolismo , Citocinas/genética , Quimioterapia Combinada , Feminino , Citometria de Fluxo , Humanos , Inflamação/genética , Inflamação/metabolismo , Hanseníase/patologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Pessoa de Meia-Idade , Família Multigênica , Reação em Cadeia da Polimerase em Tempo Real
7.
J Immunol ; 202(1): 183-193, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510070

RESUMO

Both common and rare genetic variants of laccase domain-containing 1 (LACC1, previously C13orf31) are associated with inflammatory bowel disease, leprosy, Behcet disease, and systemic juvenile idiopathic arthritis. However, the functional relevance of these variants is unclear. In this study, we use LACC1-deficient mice to gain insight into the role of LACC1 in regulating inflammation. Following oral administration of Citrobacter rodentium, LACC1 knockout (KO) mice had more severe colon lesions compared with wildtype (WT) controls. Immunization with collagen II, a collagen-induced arthritis (CIA) model, resulted in an accelerated onset of arthritis and significantly worse arthritis and inflammation in LACC1 KO mice. Similar results were obtained in a mannan-induced arthritis model. Serum and local TNF in CIA paws and C. rodentium colons were significantly increased in LACC1 KO mice compared with WT controls. The percentage of IL-17A-producing CD4+ T cells was elevated in LACC1 KO mice undergoing CIA as well as aged mice compared with WT controls. Neutralization of IL-17, but not TNF, prevented enhanced mannan-induced arthritis in LACC1 KO mice. These data provide new mechanistic insight into the function of LACC1 in regulating TNF and IL-17 during inflammatory responses. We hypothesize that these effects contribute to immune-driven pathologies observed in individuals carrying LACC1 variants.


Assuntos
Artrite Experimental/imunologia , Artrite Juvenil/imunologia , Citrobacter rodentium/fisiologia , Infecções por Enterobacteriaceae/imunologia , Doenças Inflamatórias Intestinais/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Oxirredutases/metabolismo , Células Th17/imunologia , Alelos , Animais , Artrite Experimental/microbiologia , Artrite Juvenil/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Doenças Inflamatórias Intestinais/genética , Interleucina-17/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredutases/genética , Polimorfismo Genético , Fatores de Necrose Tumoral/metabolismo
8.
Immunobiology ; 223(4-5): 397-404, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29150026

RESUMO

Regulatory T cells (Tregs) are known to control immune responses by suppressing the antigen-presenting and effector T cells. Some mechanisms adopted by Tregs in combating Mycobacterium infections have been proposed. Nevertheless, in M. leprae infection, also known as leprosy or Hansen's disease, the role of Tregs has not been completely elucidated. Using multicolor flow cytometry, we evaluated the expression of different cell surface and intracellular molecules present in Tregs from peripheral blood samples of leprosy patients. Before initiating treatment, thirteen new cases of leprosy were grouped according to the Ridley-Jopling classification in to the paucibacilary (PB) or multibacilary (MB) group. Fifteen non-infected individuals (NI) were included as control subjects. Tregs were higher in the MB group than in the NI group. Tregs also co-expressed high amounts of PD1 and PDL-1, indicating that these cells could induce apoptosis of effector cells and simultaneously prevent their own apoptosis. Our data showed that compared to the NI group, Tregs from the PB group expressed higher levels of CD95L, which may be associated with other apoptotic pathways that may decrease Tregs in these patients. Correlation analysis reinforced that PD1 and CD95L are efficient apoptosis' pathway that decreased levels of Tregs in the NI and PB groups. We also observed significant differences in cytokine expression of Tregs from the PB and MB groups. Compared to the NI group, Tregs from the MB group showed higher IL-17 expression; however, compared to the PB group, the expression of IL-10 in Tregs from the MB group was lower, suggesting inefficient control of inflammation. Therefore, we concluded that different pathways were involved in Treg-induced suppression of leprosy. Moreover, Treg-mediated regulation of inflammation via IL-10 and IL-17 expression in leprosy patients was inefficient. Thus, we propose that during M. leprae infection, Tregs may impair the immune responses elicited against this bacillus, favor bacterial replication, and aid in persistence of a disseminated multibacillary disease.


Assuntos
Células Sanguíneas/imunologia , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Apoptose , Antígeno B7-H1/metabolismo , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Fator de Transcrição Ikaros/metabolismo , Imunofenotipagem , Interleucina-10/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Masculino , Receptor de Morte Celular Programada 1/metabolismo
9.
PLoS Negl Trop Dis ; 11(10): e0006001, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28991896

RESUMO

Leprosy is a disease caused by Mycobacterium leprae where the clinical spectrum correlates with the patient immune response. Erythema Nodosum Leprosum (ENL) is an immune-mediated inflammatory complication, which causes significant morbidity in affected leprosy patients. The underlying cause of ENL is not conclusively known. However, immune-complexes and cell-mediated immunity have been suggested in the pathogenesis of ENL. The aim of this study was to investigate the regulatory T-cells in patients with ENL. Forty-six untreated patients with ENL and 31 non-reactional lepromatous leprosy (LL) patient controls visiting ALERT Hospital, Ethiopia were enrolled to the study. Blood samples were obtained before, during and after prednisolone treatment of ENL cases. Peripheral blood mononuclear cells (PBMCs) were isolated and used for immunophenotyping of regulatory T-cells by flow cytometry. Five markers: CD3, CD4 or CD8, CD25, CD27 and FoxP3 were used to define CD4+ and CD8+ regulatory T-cells. Clinical and histopathological data were obtained as supplementary information. All patients had been followed for 28 weeks. Patients with ENL reactions had a lower percentage of CD4+ regulatory T-cells (1.7%) than LL patient controls (3.8%) at diagnosis of ENL before treatment. After treatment, the percentage of CD4+regulatory T-cells was not significantly different between the two groups. The percentage of CD8+ regulatory T-cells was not significantly different in ENL and LL controls before and after treatment. Furthermore, patients with ENL had higher percentage of CD4+ T-ells and CD4+/CD8+ T-cells ratio than LL patient controls before treatment. The expression of CD25 on CD4+ and CD8+ T-cells was not significantly different in ENL and LL controls suggesting that CD25 expression is not associated with ENL reactions while FoxP3 expression on CD4+ T-cells was significantly lower in patients with ENL than in LL controls. We also found that prednisolone treatment of patients with ENL reactions suppresses CD4+ T-cell but not CD8+ T-cell frequencies. Hence, ENL is associated with lower levels of T regulatory cells and higher CD4+/CD8+ T-cell ratio. We suggest that this loss of regulation is one of the causes of ENL.


Assuntos
Eritema Nodoso/etiologia , Eritema Nodoso/imunologia , Hanseníase/complicações , Linfócitos T/fisiologia , Adolescente , Adulto , Anti-Inflamatórios/uso terapêutico , Estudos de Casos e Controles , Eritema Nodoso/tratamento farmacológico , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Hanseníase/imunologia , Masculino , Pessoa de Meia-Idade , Prednisolona/uso terapêutico , Linfócitos T/classificação , Adulto Jovem
10.
Scand J Immunol ; 86(1): 40-49, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28426172

RESUMO

It is well established that helper T cell responses influence resistance or susceptibility to Mycobacterium leprae infection, but the role of more recently described helper T cell subsets in determining severity is less clear. To investigate the involvement of Th17 cells in the pathogenesis of leprosy, we determined the immune profile with variant presentations of leprosy. Firstly, IL-17A, IFN-γ and IL-10 were evaluated in conjunction with CD4+ T cell staining by confocal microscopy of lesion biopsies from tuberculoid (TT) and lepromatous leprosy (LL) patients. Secondly, inflammatory cytokines were measured by multiplex assay of serum samples from Multibacillary (MB, n = 28) and Paucibacillary (PB, n = 23) patients and household contacts (HHC, n = 23). Patients with leprosy were also evaluated for leprosy reaction occurrence: LR+ (n = 8) and LR- (n = 20). Finally, peripheral blood mononuclear cells were analysed by flow cytometry used to determine the phenotype of cytokine-producing cells. Lesions from TT patients were found to have more CD4+ IL-17A+ cells than those from LL patients. Higher concentrations of IL-17A and IL-1ß were observed in serum from PB than MB patients. The highest serum IFN-γ concentrations were, however, detected in sera from MB patients that developed leprosy reactions (MB LR+ ). Together, these results indicate that Th1 cells were associated with both the PB presentation and also with leprosy reactions. In contrast, Th17 cells were associated with an effective inflammatory response that is present in the PB forms but were not predictive of leprosy reactions in MB patients.


Assuntos
Mediadores da Inflamação/imunologia , Hanseníase Paucibacilar/imunologia , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Células Th1/imunologia , Células Th17/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Criança , Busca de Comunicante , Feminino , Citometria de Fluxo , Humanos , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Interferon gama/sangue , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-10/sangue , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-17/sangue , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-1beta/sangue , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Hanseníase/sangue , Hanseníase/microbiologia , Hanseníase Multibacilar/sangue , Hanseníase Multibacilar/imunologia , Hanseníase Multibacilar/microbiologia , Hanseníase Paucibacilar/sangue , Hanseníase Paucibacilar/microbiologia , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Mycobacterium leprae/fisiologia , Células Th1/metabolismo , Células Th17/metabolismo , Adulto Jovem
11.
Tuberculosis (Edinb) ; 101S: S99-S104, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27742462

RESUMO

Mycobacterium tuberculosis secretes a number of proteins into the extracellular milieu during growth. Several of these proteins have been associated with modulation of the host immune response. Antigen 84, or Wag31, is one such protein that is conserved among all mycobacterial species and is recognized by the sera from tuberculosis and leprosy patients. Here, we examined the effect of Wag31 on the ability of activated human T cells to produce cytokines such as IL-10, IL-17 and IFN-γ in response to combined anti-CD3 and anti-CD28 stimulation. Purified recombinant Wag31 inhibited the secretion of IL-10 and IL-17, but not IFN-γ, by human T cells stimulated with plate-bound anti-CD3 and anti-CD28 monoclonal antibodies. Furthermore, the C-terminal domain, but not the N-terminal domain, inhibited the production of IL-10 and IL-17 without a significant effect on the production of IFN-γ. These data suggest that Wag31 may modulate human T cell immune responses during tuberculosis infection through its C-terminal domain.


Assuntos
Proteínas de Bactérias/farmacologia , Citocinas/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Linfócitos T/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Células Cultivadas , Citocinas/imunologia , Relação Dose-Resposta a Droga , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-17/imunologia , Interleucina-17/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade , Linfócitos T/imunologia , Linfócitos T/metabolismo
12.
J Eur Acad Dermatol Venereol ; 29(7): 1354-61, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25429820

RESUMO

BACKGROUND: Studies on the immunology of leprosy are fundamental to the understanding of the various forms of clinical manifestation of the disease. In some diseases, lymphocytes TH17 and one of its key cytokines, interleukin-17 has been shown to be essential in developing an effective immune response. In leprosy, involvement of lymphocyte TH17 and interleukin-17 remains understudied. OBJECTIVES: This study is the first investigation to examine the association between TH17 cells, interleukin-17 and interferon- γ in patients and households contacts of leprosy. METHODS: To document the participation of TH17 cells and interleukin-17 in the immunology of leprosy, to observe the behavior of interferon-γ in relation to interleukin-17 and to verify the differences found between individuals paucibacillary, multibacillary and household contacts, we analyzed samples peripheral blood to identify TH-17 cells, interleukin-17 and IFN-γ; establishing relationships between all the groups. RESULTS: There was a significant difference in the results found in the comparison between the paucibacillary and multibacillary groups of patients (P < 0.001), as well with the household contacts (P < 0.005). The polychemotherapeutic treatment modified the profile of immune response in multibacillary patients compared to what was observed before the start of treatment. CONCLUSION: The principal finding was that TH17 lymphocytes and interleukin-17 actively participating in the immune response of Hansen's disease as well these cells can stimulate the cellular immunity.


Assuntos
Imunidade Celular , Interferon gama/imunologia , Interleucina-17/imunologia , Hansenostáticos/uso terapêutico , Hanseníase Multibacilar/imunologia , Hanseníase Paucibacilar/imunologia , Células Th17/imunologia , Adolescente , Adulto , Idoso , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Hanseníase Multibacilar/tratamento farmacológico , Hanseníase Multibacilar/transmissão , Hanseníase Paucibacilar/tratamento farmacológico , Hanseníase Paucibacilar/transmissão , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Artigo em Inglês | MEDLINE | ID: mdl-24177608

RESUMO

BACKGROUND: Combating Mycobacterium leprae is known to be via T-helper1 response. However, other T-helper effector cells; T-helper17 and T-helper2; play a role, particularly in the context of disease type. AIMS: We aimed to evaluate serum levels of interleukin (IL)-17 (T-helper17 cytokine) and IL-4 (T-helper2 cytokine) in untreated patients with different types of leprosy, compared to controls. METHODS: Using enzyme-linked immunosorbent assay, serum IL-17 and IL-4 levels were estimated in 43 leprotic patients and 43 controls. Patients were divided into six groups; tuberculoid, borderline cases, lepromatous, erythema nodosum leprosum (ENL), type 1 reactional leprosy, and pure neural leprosy. Patients were also categorized according to bacillary load and the presence or absence of reactions. RESULTS: Serum IL-17 was significantly lower in cases (4-61.5 pg/mL; median 19), compared to controls (26-55 pg/mL; median 36) (P < 0.001), and was significantly lower in each type of leprosy compared to controls, with the lowest level in lepromatous leprosy (4-61.5 pg/mL; median 12.5). Significantly elevated serum IL-4 was found in patients (1.31-122.4 pg/mL; median 2.31) compared to controls (1.45-5.72 pg/mL; median 2.02) (P = 0.008), with the highest level among lepromatous leprosy patients (2-87.2 pg/mL; median 28.9), and the lowest in type 1 reactional leprosy (1.4-2.5 pg/mL; median 1.87) (P = 0.006). CONCLUSION: Defective secretion of IL-17 is related to disease acquisition as well as progression toward lepromatous pole in leprosy patients. The overproduction of IL-4 in patients with lepromatous leprosy may infer their liability to develop ENL. Nevertheless, the small number of the studied population is a limitation.


Assuntos
Compreensão , Interleucina-17/sangue , Interleucina-4/sangue , Hanseníase/sangue , Hanseníase/diagnóstico , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Progressão da Doença , Feminino , Humanos , Interleucina-17/metabolismo , Hanseníase/patologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
J Clin Immunol ; 33(2): 446-55, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23073617

RESUMO

RATIONALE: Sarcoidosis is a granulomatous disease of unknown etiology. Many patients with sarcoidosis demonstrate antigen-specific immunity to mycobacterial virulence factors. Th-17 cells are crucial to the immune response in granulomatous inflammation, and have recently been shown to be present in greater numbers in the peripheral blood and bronchoalveolar lavage (BAL) fluid (BALF) of sarcoidosis patients than healthy controls. It is unclear whether Th-17 cells in sarcoidosis are specific for mycobacterial antigens, or whether they have similar functionality to control Th-17 cells. METHODS: Flow cytometry was used to determine the numbers of Th-17 cells present in the peripheral blood and BALF of patients with sarcoidosis, the percentage of Th-17 cells that were specific to the mycobacterial virulence factor ESAT-6, and as well as to assess IFN-γ expression in Th-17 cells following polyclonal stimulation. RESULTS: Patients with sarcoidosis had greater numbers of Th-17 cells in the peripheral blood and BALF than controls and produced significantly more extracellular IL-17A (p = 0.03 and p = 0.02, respectively). ESAT-6 specific Th-17 cells were present in both peripheral blood and BALF of sarcoidosis patients (p < 0.001 and p = 0.03, respectively). After polyclonal stimulation, Th-17 cells from sarcoidosis patients produced less IFN-γ than healthy controls. CONCLUSIONS: Patients with sarcoidosis have mycobacterial antigen-specific Th-17 cells peripherally and in sites of active sarcoidosis involvement. Despite the Th1 immunophenotype of sarcoidosis immunology, the Th-17 cells have reduced IFN-γ expression, compared to healthy controls. This reduction in immunity may contribute to sarcoidosis pathogenesis.


Assuntos
Antígenos de Bactérias/imunologia , Interferon gama/biossíntese , Sarcoidose/imunologia , Sarcoidose/metabolismo , Células Th17/imunologia , Adulto , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Estudos de Casos e Controles , Feminino , Humanos , Imunofenotipagem , Interleucina-17/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Células Th1/imunologia , Células Th17/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA