Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Br J Dermatol ; 190(3): 305-315, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-37889986

RESUMO

Inflammasomes are cytoplasmic protein complexes that play a crucial role in protecting the host against pathogenic and sterile stressors by initiating inflammation. Upon activation, these complexes directly regulate the proteolytic processing and activation of proinflammatory cytokines interleukin (IL)-1ß and IL-18 to induce a potent inflammatory response, and induce a programmed form of cell death called pyroptosis to expose intracellular pathogens to the surveillance of the immune system, thus perpetuating inflammation. There are various types of inflammasome complexes, with the NLRP1 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-1) inflammasome being the first one identified and currently recognized as the predominant inflammasome sensor protein in human keratinocytes. Human NLRP1 exhibits a unique domain structure, containing both an N-terminal pyrin (PYD) domain and an effector C-terminal caspase recruitment domain (CARD). It can be activated by diverse stimuli, such as viruses, ultraviolet B radiation and ribotoxic stress responses. Specific mutations in NLRP1 or related genes have been associated with rare monogenic skin disorders, such as multiple self-healing palmoplantar carcinoma; familial keratosis lichenoides chronica; autoinflammation with arthritis and dyskeratosis; and dipeptidyl peptidase 9 deficiency. Recent research breakthroughs have also highlighted the involvement of dysfunctions in the NLRP1 pathway in a handful of seemingly unrelated dermatological conditions. These range from monogenic autoinflammatory diseases to polygenic autoimmune diseases such as vitiligo, psoriasis, atopic dermatitis and skin cancer, including squamous cell carcinoma, melanoma and Kaposi sarcoma. Additionally, emerging evidence implicates NLRP1 in systemic lupus erythematosus, pemphigus vulgaris, Addison disease, Papillon-Lefèvre syndrome and leprosy. The aim of this review is to shed light on the implications of pathological dysregulation of the NLRP1 inflammasome in skin diseases and investigate the potential rationale for targeting this pathway as a future therapeutic approach.


Assuntos
Dermatite , Dermatopatias , Neoplasias Cutâneas , Humanos , Inflamassomos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas NLR/metabolismo , Neoplasias Cutâneas/patologia , Dermatopatias/etiologia , Inflamação/genética , Interleucina-1beta/metabolismo
2.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076568

RESUMO

The ovine choroid plexus (ChP) expresses the long isoform of the leptin receptor, which makes this structure a potential target for leptin action. In sheep, leptin concentration in plasma is higher during long days (LD) than short days (SD). This study evaluates the influence a of photoperiod on leptin impact on the gene expression of Toll-like receptor 4 (TLR4), proinflammatory cytokines (IL1B, IL6), their receptors (IL1R1, IL1R2, ILRN, IL6R, IL6ST) and inflammasome components necessary for pro-IL-1ß activation (NLRP3, PYCARD, CASP1), chemokine (CCL2), leptin receptor isoforms (LEPRa, LEPRb) and a suppressor of cytokine signalling (SOCS3) in the ChP of ewes treated or not with lipopolysaccharide (LPS). Studies were conducted on adult female sheep divided into four groups (n = 6 in each): control, leptin (20 µg/kg), LPS (400 ng/kg), and LPS and leptin injected under SD and LD photoperiods. The leptin alone did not affect the gene expression but in co-treatment with LPS increased (p < 0.05) IL1B but only during SD, and SOCS3, IL1R2, IL1RN, IL6ST and CCL2 only during LD, and decreased (p < 0.05) the IL1R1 expression only during SD photoperiod. This indicates that the immunomodulatory action of leptin on the ChP is manifested only under the LPS challenge and is photoperiodically dependent.


Assuntos
Plexo Corióideo/metabolismo , Inflamassomos/metabolismo , Leptina/sangue , Fotoperíodo , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Plexo Corióideo/efeitos dos fármacos , Feminino , Inflamassomos/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Ovinos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
3.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824985

RESUMO

The aim of this study is to examine the use of an inflammasome competitor as a preventative agent. Coronaviruses have zoonotic potential due to the adaptability of their S protein to bind receptors of other species, most notably demonstrated by SARS-CoV. The binding of SARS-CoV-2 to TLR (Toll-like receptor) causes the release of pro-IL-1ß, which is cleaved by caspase-1, followed by the formation and activation of the inflammasome, which is a mediator of lung inflammation, fever, and fibrosis. The NLRP3 (NACHT, LRR and PYD domains-containing protein 3) inflammasome is implicated in a variety of human diseases including Alzheimer's disease (AD), prion diseases, type 2 diabetes, and numerous infectious diseases. By examining the use of 4,4'-diaminodiphenyl sulfone (DDS) in the treatment of patients with Hansen's disease, also diagnosed as Alzheimer's disease, this study demonstrates the diverse mechanisms involved in the activation of inflammasomes. TLRs, due to genetic polymorphisms, can alter the immune response to a wide variety of microbial ligands, including viruses. In particular, TLR2Arg677Trp was reported to be exclusively present in Korean patients with lepromatous leprosy (LL). Previously, mutation of the intracellular domain of TLR2 has demonstrated its role in determining the susceptibility to LL, though LL was successfully treated using a combination of DDS with rifampicin and clofazimine. Of the three tested antibiotics, DDS was effective in the molecular regulation of NLRP3 inflammasome activators that are important in mild cognitive impairment (MCI), Parkinson's disease (PD), and AD. The specific targeting of NLRP3 itself or up-/downstream factors of the NLRP3 inflammasome by DDS may be responsible for its observed preventive effects, functioning as a competitor.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Dapsona/farmacologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia Viral/tratamento farmacológico , Doença de Alzheimer/patologia , COVID-19 , Clofazimina/farmacologia , Disfunção Cognitiva/patologia , Humanos , Interleucina-1beta/metabolismo , Hanseníase/tratamento farmacológico , Hanseníase/genética , Pandemias , Transtornos Parkinsonianos/patologia , Rifampina/farmacologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Receptor 2 Toll-Like/genética
4.
J Immunol ; 203(4): 911-921, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31235553

RESUMO

Th17 cells play a critical role in the adaptive immune response against extracellular bacteria, and the possible mechanisms by which they can protect against infection are of particular interest. In this study, we describe, to our knowledge, a novel IL-1ß dependent pathway for secretion of the antimicrobial peptide IL-26 from human Th17 cells that is independent of and more rapid than classical TCR activation. We find that IL-26 is secreted 3 hours after treating PBMCs with Mycobacterium leprae as compared with 48 hours for IFN-γ and IL-17A. IL-1ß was required for microbial ligand induction of IL-26 and was sufficient to stimulate IL-26 release from Th17 cells. Only IL-1RI+ Th17 cells responded to IL-1ß, inducing an NF-κB-regulated transcriptome. Finally, supernatants from IL-1ß-treated memory T cells killed Escherichia coli in an IL-26-dependent manner. These results identify a mechanism by which human IL-1RI+ "antimicrobial Th17 cells" can be rapidly activated by IL-1ß as part of the innate immune response to produce IL-26 to kill extracellular bacteria.


Assuntos
Imunidade Inata/imunologia , Interleucina-1beta/imunologia , Interleucinas/imunologia , Ativação Linfocitária/imunologia , Células Th17/imunologia , Infecções Bacterianas/imunologia , Humanos , Interleucina-1beta/metabolismo , Interleucinas/metabolismo , Células Th17/microbiologia
5.
Front Immunol ; 9: 1223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915584

RESUMO

Leprosy reactions are responsible for incapacities in leprosy and represent the major cause of permanent neuropathy. The identification of biomarkers able to identify patients more prone to develop reaction could contribute to adequate clinical management and the prevention of disability. Reversal reaction may occur in unstable borderline patients and also in lepromatous patients. To identify biomarker signature profiles related with the reversal reaction onset, multibacillary patients were recruited and classified accordingly the occurrence or not of reversal reaction during or after multidrugtherapy. Analysis of skin lesion cells at diagnosis of multibacillary leprosy demonstrated that in the group that developed reaction (T1R) in the future there was a downregulation of autophagy associated with the overexpression of TLR2 and MLST8. The autophagy impairment in T1R group was associated with increased expression of NLRP3, caspase-1 (p10) and IL-1ß production. In addition, analysis of IL-1ß production in serum from multibacillary patients demonstrated that patients who developed reversal reaction have significantly increased concentrations of IL-1ß at diagnosis, suggesting that the pattern of innate immune responses could predict the reactional episode outcome. In vitro analysis demonstrated that the blockade of autophagy with 3-methyladenine (3-MA) in Mycobacterium leprae-stimulated human primary monocytes increased the assembly of NLRP3 specks assembly, and it was associated with an increase of IL-1ß and IL-6 production. Together, our data suggest an important role for autophagy in multibacillary leprosy patients to avoid exacerbated inflammasome activation and the onset of reversal reaction.


Assuntos
Autofagia , Inflamassomos/metabolismo , Hanseníase Multibacilar/etiologia , Hanseníase Multibacilar/metabolismo , Adulto , Idoso , Biomarcadores , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Interleucina-1beta/metabolismo , Hanseníase Multibacilar/patologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/microbiologia , Mycobacterium leprae/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Transcriptoma
6.
Acta Trop ; 172: 213-216, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28511777

RESUMO

Previous studies suggest that coinfection of leprosy and human immunodeficiency virus (HIV) does not decrease the frequency and intensity of leprosy reactions. However, the immunological aspects of leprosy reactions in coinfected patients remain obscure, with a limited number of studies showing contradictory results. Observational study using tissue samples collected during leprosy reactions from 15 patients coinfected with leprosy and HIV and from 15 patients with leprosy alone. Patients were part of a prior larger cohort study of leprosy patients with and without HIV coinfection. Specific antibodies were used to detect IL-1ß and IL-6 expression in skin biopsy tissue cells. IL-1ß and IL-6 expression was similar between leprosy patients with and without HIV coinfection (p>0.05). Coinfected and non-coinfected tissues showed similar levels of IL-1ß and IL-6 expression for type 1 reactions. A trend towards increased levels of IL-1ß and IL-6 expression was observed in tissue from coinfected patients (p=0.0024). The expression of IL-1ß and IL-6 during leprosy reactions did not differ significantly between tissues obtained from leprosy patients with and without HIV coinfection. Therefore, we conclude that HIV coinfection does not affect the immunological pattern of leprosy reactions.


Assuntos
Coinfecção/metabolismo , Infecções por HIV/complicações , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Hanseníase/complicações , Adulto , Estudos de Coortes , Estudos Transversais , Feminino , Regulação da Expressão Gênica/imunologia , Infecções por HIV/imunologia , Humanos , Imuno-Histoquímica , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Hanseníase/imunologia , Modelos Lineares , Masculino , Pele/patologia
7.
Scand J Immunol ; 86(1): 40-49, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28426172

RESUMO

It is well established that helper T cell responses influence resistance or susceptibility to Mycobacterium leprae infection, but the role of more recently described helper T cell subsets in determining severity is less clear. To investigate the involvement of Th17 cells in the pathogenesis of leprosy, we determined the immune profile with variant presentations of leprosy. Firstly, IL-17A, IFN-γ and IL-10 were evaluated in conjunction with CD4+ T cell staining by confocal microscopy of lesion biopsies from tuberculoid (TT) and lepromatous leprosy (LL) patients. Secondly, inflammatory cytokines were measured by multiplex assay of serum samples from Multibacillary (MB, n = 28) and Paucibacillary (PB, n = 23) patients and household contacts (HHC, n = 23). Patients with leprosy were also evaluated for leprosy reaction occurrence: LR+ (n = 8) and LR- (n = 20). Finally, peripheral blood mononuclear cells were analysed by flow cytometry used to determine the phenotype of cytokine-producing cells. Lesions from TT patients were found to have more CD4+ IL-17A+ cells than those from LL patients. Higher concentrations of IL-17A and IL-1ß were observed in serum from PB than MB patients. The highest serum IFN-γ concentrations were, however, detected in sera from MB patients that developed leprosy reactions (MB LR+ ). Together, these results indicate that Th1 cells were associated with both the PB presentation and also with leprosy reactions. In contrast, Th17 cells were associated with an effective inflammatory response that is present in the PB forms but were not predictive of leprosy reactions in MB patients.


Assuntos
Mediadores da Inflamação/imunologia , Hanseníase Paucibacilar/imunologia , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Células Th1/imunologia , Células Th17/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Criança , Busca de Comunicante , Feminino , Citometria de Fluxo , Humanos , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Interferon gama/sangue , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-10/sangue , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-17/sangue , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-1beta/sangue , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Hanseníase/sangue , Hanseníase/microbiologia , Hanseníase Multibacilar/sangue , Hanseníase Multibacilar/imunologia , Hanseníase Multibacilar/microbiologia , Hanseníase Paucibacilar/sangue , Hanseníase Paucibacilar/microbiologia , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Mycobacterium leprae/fisiologia , Células Th1/metabolismo , Células Th17/metabolismo , Adulto Jovem
8.
Antimicrob Agents Chemother ; 60(6): 3470-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27021320

RESUMO

Clofazimine (CFZ) is a poorly soluble antibiotic and anti-inflammatory drug indicated for the treatment of leprosy. In spite of its therapeutic value, CFZ therapy is accompanied by the formation of drug biocrystals that accumulate within resident tissue macrophages, without obvious toxicological manifestations. Therefore, to specifically elucidate the off-target consequences of drug bioaccumulation in macrophages, we compared the level of inflammasome activation in CFZ-accumulating organs (spleen, liver and lung) in mice after 2 and 8 weeks of CFZ treatment when the drug exists in soluble and insoluble (biocrystalline) forms, respectively. Surprisingly, the results showed a drastic reduction in caspase 1 and interleukin-1ß (IL-1ß) cleavage in the livers of mice treated with CFZ for 8 weeks (8-week-CFZ-treated mice) compared to 2-week-CFZ-treated and control mice, which was accompanied by a 3-fold increase in hepatic IL-1 receptor antagonist (IL-1RA) production and a 21-fold increase in serum IL-1RA levels. In the lung and spleen, IL-1ß cleavage and tumor necrosis factor alpha expression were unaffected by soluble or biocrystal CFZ forms. Functionally, there was a drastic reduction of carrageenan- and lipopolysaccharide-induced inflammation in the footpads and lungs, respectively, of 8-week-CFZ-treated mice. This immunomodulatory activity of CFZ biocrystal accumulation was attributable to the upregulation of IL-1RA, since CFZ accumulation had minimal effect in IL-1RA knockout mice or 2-week-CFZ-treated mice. In conclusion, CFZ accumulation and biocrystal formation in resident tissue macrophages profoundly altered the host's immune system and prompted an IL-1RA-dependent, systemic anti-inflammatory response.


Assuntos
Anti-Inflamatórios/farmacologia , Clofazimina/farmacologia , Inflamassomos/imunologia , Proteína Acessória do Receptor de Interleucina-1/biossíntese , Macrófagos/efeitos dos fármacos , Animais , Carragenina , Caspase 1/metabolismo , Inflamação/tratamento farmacológico , Proteína Acessória do Receptor de Interleucina-1/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Baço/metabolismo , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
9.
J Immunol ; 187(9): 4744-53, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21957139

RESUMO

During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5--two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators--during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1ß activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread.


Assuntos
Proteínas de Homeodomínio/metabolismo , Inflamassomos/imunologia , Inflamassomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium marinum/imunologia , Mycobacterium tuberculosis/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Morte Celular/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Camundongos , Mycobacterium marinum/patogenicidade , Mycobacterium tuberculosis/patogenicidade
10.
Mediators Inflamm ; 2010: 708713, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20671924

RESUMO

A/J mice were found to have amino acid differences in Naip5, one of the NOD-like receptors (NLRs) involved in the cytosolic recognition of pathogen-associated molecular patterns and one of the adaptor proteins for caspase-1 activation. This defect was associated with a susceptibility to Legionella infection, suggesting an important role for Naip5 in the immune response also to other intracellular pathogens, such as Mycobacterium leprae. In this study, the immune responses of macrophages from A/J mice against M. leprae were compared to those of macrophages from C57BL/6 mice. Infection with M. leprae induced high levels of TNF-alpha production and NF-kappaB activation in A/J and C57BL/6 macrophages. Caspase-1 activation and IL-1beta secretion were also induced in both macrophages. However, macrophages from A/J mice exhibited reduced caspase-1 activation and IL-1beta secretion compared to C57BL/6 macrophages. These results suggest that NLR family proteins may have a role in the innate immune response to M. leprae.


Assuntos
Caspase 1/metabolismo , Sistema Imunitário/fisiologia , Interleucina-1beta/metabolismo , Hanseníase/imunologia , Macrófagos/imunologia , Mycobacterium leprae/imunologia , Animais , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Mycobacterium leprae/patogenicidade , Proteína Inibidora de Apoptose Neuronal/genética , Proteína Inibidora de Apoptose Neuronal/imunologia , Especificidade da Espécie
11.
Immunopharmacol Immunotoxicol ; 30(3): 447-57, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18668392

RESUMO

Thalidomide is used to treat erythema nodosum leprosum (ENL). The events that precipitate this inflammatory reaction, which may occur in multibacillary leprosy patients, and the mechanism by which thalidomide arrest ENL, are not known. Thalidomide's ability to inhibit tumor necrosis factor alpha (TNF-alpha) in vitro has been proposed as a partial explanation of its effective treatment of ENL. In in vitro assays, thalidomide can enhance or suppress TNF-alpha. This is dependent on the stimulant used to evoke TNF-alpha; the procedure used to isolate the mononuclear cells from blood, and the predominant mononuclear cell type in the culture. To avoid artifacts that may occur during isolation of mononuclear cells from blood, we stimulated normal human blood with LPS and evaluated the effect of thalidomide and dexamethasone on TNF-alpha, and other inflammatory cytokines and biomarkers. Thalidomide suppressed interleukin 1 beta (IL-1beta) (p = 0.007), and it enhanced TNF-alpha (p = 0.007) and interleukin 10 (IL-10) (p = 0.031). Dexamethasone enhanced IL-10 (p = 0.013) and suppressed IL-1beta, TNF-alpha, interleukin 6 (IL-6), and interleukin 8 (IL-8) (p = 0.013). The two drugs did not suppress: C-reactive protein (CRP), Ig-superfamily cell-adhesion molecule 1 (ICAM 1), tumor necrosis factor receptor 1 (TNFR1), tumor necrosis factor receptor 2 (TNFR2), or amyloid A. In vitro and in vivo evidence is accumulating that TNF-alpha is not the primary cytokine targeted by thalidomide in ENL and other inflammatory conditions.


Assuntos
Imunossupressores/farmacologia , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Talidomida/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Proteína C-Reativa/metabolismo , Células Cultivadas , Dexametasona/farmacologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Leucócitos Mononucleares/imunologia , Masculino , Receptores do Fator de Necrose Tumoral/metabolismo , Proteína Amiloide A Sérica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA