Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros


Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 399: 130610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508284

RESUMO

Lignin utilization in value-added co-products is an important component of enabling cellulosic biorefinery economics. However, aqueous dilute acid pretreatments yield lignins with limited applications due to significant modification during pretreatment, low solubility in many solvents, and high content of impurities (ash, insoluble polysaccharides). This work addresses these challenges and investigates the extraction and recovery of lignins from lignin-rich insoluble residue following dilute acid pretreatment and enzymatic hydrolysis of corn stover using three extraction approaches: ethanol organosolv, NaOH, and an ionic liquid. The recovered lignins exhibited recovery yields ranging from 30% for the ionic liquid, 44% for the most severe acid ethanol organosolv condition tested, and up to 86% for the most severe NaOH extraction condition. Finally, the fractional solubilities of different recovered lignins were assessed in a range of solvents and these solubilities were used to estimate distributions of Hildebrand and Hansen solubility parameters using a novel approach.


Assuntos
Líquidos Iônicos , Lignina , Lignina/química , Zea mays/química , Hidróxido de Sódio , Solventes , Etanol/química , Ácidos , Hidrólise
2.
Sci Rep ; 13(1): 271, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609448

RESUMO

Lignin, the second most abundant biopolymer found in nature, has emerged as a potential source of sustainable fuels, chemicals, and materials. Finding suitable solvents, as well as technologies for efficient and affordable lignin dissolution and depolymerization, are major obstacles in the conversion of lignin to value-added products. Certain ionic liquids (ILs) are capable of dissolving and depolymerizing lignin but designing and developing an effective IL for lignin dissolution remains quite challenging. To address this issue, the COnductor-like Screening MOdel for Real Solvents (COSMO-RS) model was used to screen 5670 ILs by computing logarithmic activity coefficients (ln(γ)) and excess enthalpies (HE) of lignin, respectively. Based on the COSMO-RS computed thermodynamic properties (ln(γ) and HE) of lignin, anions such as acetate, methyl carbonate, octanoate, glycinate, alaninate, and lysinate in combination with cations like tetraalkylammonium, tetraalkylphosphonium, and pyridinium are predicted to be suitable solvents for lignin dissolution. The dissolution properties such as interaction energy between anion and cation, viscosity, Hansen solubility parameters, dissociation constants, and Kamlet-Taft parameters of selected ILs were evaluated to assess their propensity for lignin dissolution. Furthermore, molecular dynamics (MD) simulations were performed to understand the structural and dynamic properties of tetrabutylammonium [TBA]+-based ILs and lignin mixtures and to shed light on the mechanisms involved in lignin dissolution. MD simulation results suggested [TBA]+-based ILs have the potential to dissolve lignin because of their higher contact probability and interaction energies with lignin when compared to cholinium lysinate.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Lignina/química , Solventes/química , Simulação de Dinâmica Molecular , Ânions/química , Cátions/química
3.
Molecules ; 24(7)2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959775

RESUMO

The physicochemical properties of four 1-alkyl-3-methylimidazolium bromide ([CnC1im]Br, n = 5, 6, 7, 8) ionic liquids (ILs) were investigated in this work by using inverse gas chromatography (IGC) from 303.15 K to 343.15 K. Twenty-eight organic solvents were used to obtain the physicochemical properties between each IL and solvent via the IGC method, including the specific retention volume and the Flory⁻Huggins interaction parameter. The Hildebrand solubility parameters of the four [CnC1im]Br ILs were determined by linear extrapolation to be δ 2 ( [ C 5 C 1 im ] Br ) = 25.78 (J·cm-3)0.5, δ 2 ( [ C 6 C 1 im ] Br ) = 25.38 (J·cm-3)0.5, δ 2 ( [ C 7 C 1 im ] Br ) =24.78 (J·cm-3)0.5 and δ 2 ( [ C 8 C 1 im ] Br ) = 24.23 (J·cm-3)0.5 at room temperature (298.15 K). At the same time, the Hansen solubility parameters of the four [CnC1im]Br ILs were simulated by using the Hansen Solubility Parameter in Practice (HSPiP) at room temperature (298.15 K). The results were as follows: δ t ( [ C 5 C 1 im ] Br ) = 25.86 (J·cm-3)0.5, δ t ( [ C 6 C 1 im ] Br ) = 25.39 (J·cm-3)0.5, δ t ( [ C 7 C 1 im ] Br ) = 24.81 (J·cm-3)0.5 and δ t ( [ C 8 C 1 im ] Br ) = 24.33 (J·cm-3)0.5. These values were slightly higher than those obtained by the IGC method, but they only exhibited small errors, covering a range of 0.01 to 0.1 (J·cm-3)0.5. In addition, the miscibility between the IL and the probe was evaluated by IGC, and it exhibited a basic agreement with the HSPiP. This study confirms that the combination of the two methods can accurately calculate solubility parameters and select solvents.


Assuntos
Imidazóis/química , Líquidos Iônicos/química , Solubilidade , Brometos/química , Cromatografia Gasosa , Solventes/química
4.
Bioresour Technol ; 170: 499-505, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25164342

RESUMO

Lignin dissolution in dialkylimidazolium-based ionic liquid (IL)-water mixtures (40wt%-100wt% IL content) at 60°C was investigated. The IL content and type are found to considerably affect lignin solubility. For the IL-water mixtures except 1-butyl-3-methylimidazolium tetrafluoroborate ([C4C1im]BF4), the maximum lignin solubility can be achieved at 70wt% IL content. Lignin solubility in IL-water mixtures with different cations follows the order 1-butyl-3-methylimidazolium ([C4C1im](+))>1-hexyl-3-methylimidazolium ([C6C1im](+))>1-ethyl-3-methylimidazolium ([C2C1im](+))>1-octyl-3-methylimidazolium ([C8C1im](+))>1-butyl-3-ethylimidazolium ([C4C2im](+))>1-butyl-3-propylimidazolium ([C4C3im](+)). For IL mixtures with different anions, lignin solubility decreases in the following order: methanesulfonate (MeSO3(-))>acetate (MeCO2(-))>bromide (Br(-))>dibutylphosphate (DBP(-)). Evaluation using the theory of Hansen solubility parameter (HSP) is consistent with the experimental results, suggesting that HSP can aid in finding the appropriate range of IL content for IL-water mixtures. However, HSP cannot be used to evaluate the effect of IL type on lignin solubility.


Assuntos
Imidazóis/química , Líquidos Iônicos/química , Lignina/química , Ânions/química , Microscopia , Modelos Químicos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA