Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros


Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 399: 130610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508284

RESUMO

Lignin utilization in value-added co-products is an important component of enabling cellulosic biorefinery economics. However, aqueous dilute acid pretreatments yield lignins with limited applications due to significant modification during pretreatment, low solubility in many solvents, and high content of impurities (ash, insoluble polysaccharides). This work addresses these challenges and investigates the extraction and recovery of lignins from lignin-rich insoluble residue following dilute acid pretreatment and enzymatic hydrolysis of corn stover using three extraction approaches: ethanol organosolv, NaOH, and an ionic liquid. The recovered lignins exhibited recovery yields ranging from 30% for the ionic liquid, 44% for the most severe acid ethanol organosolv condition tested, and up to 86% for the most severe NaOH extraction condition. Finally, the fractional solubilities of different recovered lignins were assessed in a range of solvents and these solubilities were used to estimate distributions of Hildebrand and Hansen solubility parameters using a novel approach.


Assuntos
Líquidos Iônicos , Lignina , Lignina/química , Zea mays/química , Hidróxido de Sódio , Solventes , Etanol/química , Ácidos , Hidrólise
2.
Int J Biol Macromol ; 256(Pt 2): 128506, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040143

RESUMO

Hansen solubility parameters (HSPs) play a critical role in the majority of processes involving lignin depolymerization, separation, fractionation, and polymer blending, which are directly related to dissolution properties. However, the calculation of lignin HSPs is highly complicated due to the diversity of sources and the complexity of lignin structures. Despite their important role, lignin HSPs have been undervalued, attracting insufficient attention. This review summarizes the calculation methods for lignin HSPs and proposes a straightforward method based on lignin subunits. Furthermore, it highlights the crucial applications of lignin HSPs, such as identifying ideal solvents for lignin dissolution, selecting suitable solvents for lignin depolymerization and extraction, designing green solvents for lignin fractionation, and guiding the preparation of lignin-based composites. For instance, leveraging HSPs to design a series of solvents could potentially achieve sequential controllable lignin fractionation, addressing issues of low value-added applications of lignin resulting from poor homogeneity. Notably, HSPs serve as valuable tools for understanding the dissolution behavior of lignin. Consequently, we expect this review to be of great interest to researchers specializing in lignin and other macromolecules.


Assuntos
Lignina , Polímeros , Lignina/química , Solubilidade , Solventes/química , Fracionamento Químico
3.
Sci Rep ; 13(1): 271, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609448

RESUMO

Lignin, the second most abundant biopolymer found in nature, has emerged as a potential source of sustainable fuels, chemicals, and materials. Finding suitable solvents, as well as technologies for efficient and affordable lignin dissolution and depolymerization, are major obstacles in the conversion of lignin to value-added products. Certain ionic liquids (ILs) are capable of dissolving and depolymerizing lignin but designing and developing an effective IL for lignin dissolution remains quite challenging. To address this issue, the COnductor-like Screening MOdel for Real Solvents (COSMO-RS) model was used to screen 5670 ILs by computing logarithmic activity coefficients (ln(γ)) and excess enthalpies (HE) of lignin, respectively. Based on the COSMO-RS computed thermodynamic properties (ln(γ) and HE) of lignin, anions such as acetate, methyl carbonate, octanoate, glycinate, alaninate, and lysinate in combination with cations like tetraalkylammonium, tetraalkylphosphonium, and pyridinium are predicted to be suitable solvents for lignin dissolution. The dissolution properties such as interaction energy between anion and cation, viscosity, Hansen solubility parameters, dissociation constants, and Kamlet-Taft parameters of selected ILs were evaluated to assess their propensity for lignin dissolution. Furthermore, molecular dynamics (MD) simulations were performed to understand the structural and dynamic properties of tetrabutylammonium [TBA]+-based ILs and lignin mixtures and to shed light on the mechanisms involved in lignin dissolution. MD simulation results suggested [TBA]+-based ILs have the potential to dissolve lignin because of their higher contact probability and interaction energies with lignin when compared to cholinium lysinate.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Lignina/química , Solventes/química , Simulação de Dinâmica Molecular , Ânions/química , Cátions/química
4.
Biomacromolecules ; 23(8): 3174-3185, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35792377

RESUMO

The use of lignin as a functional additive has long been a promising topic in both industry and academia, but the development of such systems is still limited by the considerable challenges posed by the incompatibility of lignin with common polymers. Herein, we designed modified silicone (MS) sealants with enhanced UV and thermal stability by incorporating molecularly engineered lignin bio-additives while establishing robust design principles to finely adjust the morphology of such blends by tailoring the molecular structures of lignin fractions. To that end, we first constructed a library of lignin fractions with various molecular weights (obtained by fractionating Kraft lignin and by using a lignin model compound) and with several chemical modifications (acetylation, butyrylation, and silylation). The lignin bio-additives were then melt-blended with MS polyethers. The experimental phase diagrams of the resulting blends were established and rationalized with a thermodynamic framework combining Hansen solubility parameters and Flory-Huggins theory, unraveling fascinating insights into the complex solubility behavior of lignin fractions and notably, for the first time, the subtle interplay between molecular weight (entropic effects) and chemical modifications (enthalpic effects). A molecularly optimized lignin additive was then selected to achieve full solubility while providing better thermal stability and UV-blocking properties to the resulting MS material. Overall, this article provides robust design principles for the elaboration of functional biomaterials with optimized morphologies based on rationally engineered lignin fractions.


Assuntos
Adesivos , Lignina , Entropia , Lignina/química , Solubilidade , Termodinâmica
5.
Bioresour Technol ; 170: 499-505, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25164342

RESUMO

Lignin dissolution in dialkylimidazolium-based ionic liquid (IL)-water mixtures (40wt%-100wt% IL content) at 60°C was investigated. The IL content and type are found to considerably affect lignin solubility. For the IL-water mixtures except 1-butyl-3-methylimidazolium tetrafluoroborate ([C4C1im]BF4), the maximum lignin solubility can be achieved at 70wt% IL content. Lignin solubility in IL-water mixtures with different cations follows the order 1-butyl-3-methylimidazolium ([C4C1im](+))>1-hexyl-3-methylimidazolium ([C6C1im](+))>1-ethyl-3-methylimidazolium ([C2C1im](+))>1-octyl-3-methylimidazolium ([C8C1im](+))>1-butyl-3-ethylimidazolium ([C4C2im](+))>1-butyl-3-propylimidazolium ([C4C3im](+)). For IL mixtures with different anions, lignin solubility decreases in the following order: methanesulfonate (MeSO3(-))>acetate (MeCO2(-))>bromide (Br(-))>dibutylphosphate (DBP(-)). Evaluation using the theory of Hansen solubility parameter (HSP) is consistent with the experimental results, suggesting that HSP can aid in finding the appropriate range of IL content for IL-water mixtures. However, HSP cannot be used to evaluate the effect of IL type on lignin solubility.


Assuntos
Imidazóis/química , Líquidos Iônicos/química , Lignina/química , Ânions/química , Microscopia , Modelos Químicos , Solubilidade
6.
Biomacromolecules ; 13(8): 2570-7, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22804452

RESUMO

Barrier performance and retrostructural modeling of the macromolecular components demonstrate new design principles for film formulations based on renewable wood hydrolysates. Hardwood hydrolysates, which contain a fair share of lignin coexisting with poly- and oligosaccharides, offer excellent oxygen-barrier performance. A Hansen solubility parameter (HSP) model has been developed to convert the complex hydrolysate structural compositions into relevant matrix oxygen-permeability data allowing a systematic prediction of how the biomass should be formulated to generate an efficient barrier. HSP modeling suggests that the molecular packing ability plays a key role in the barrier performance. The actual size and distribution of free volume holes in the matrices were quantified in the subnanometer scale with Positron annihilation lifetime spectroscopy (PALS) verifying the affinity-driven assembly of macromolecular segments in a densely packed morphology and regulating the diffusion of small permeants through the matrix. The model is general and can be adapted to determine the macromolecular affinities of any hydrolysate biomass based on chemical composition.


Assuntos
Betula/química , Manufaturas , Modelos Químicos , Extratos Vegetais/química , Polissacarídeos/química , Madeira/química , Algoritmos , Biomassa , Configuração de Carboidratos , Sequência de Carboidratos , Hidrólise , Lignina/química , Dados de Sequência Molecular , Oxigênio/química , Permeabilidade , Extratos Vegetais/isolamento & purificação , Polietilenotereftalatos/química , Polissacarídeos/isolamento & purificação , Solubilidade
7.
Biomacromolecules ; 12(4): 1355-62, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21366288

RESUMO

Biomass is converted to oxygen barriers through a conceptually unconventional approach involving the preservation of the biomass native interactions and macromolecular components and enhancing the effect by created interactions with a co-component. A combined calculation/assessment model is elaborated to understand, quantify, and predict which compositions that provide an intermolecular affinity high enough to mediate the molecular packing needed to create a functioning barrier. The biomass used is a wood hydrolysate, a polysaccharide-rich but not highly refined mixture where a fair amount of the native intermolecular and intramolecular hemicelluloses-lignin interactions are purposely preserved, resulting in barriers with very low oxygen permeabilities (OP) both at 50 and 80% relative humidity and considerably lower OPs than coatings based on the corresponding highly purified spruce hemicellulose, O-acetyl galactoglucomannan (AcGGM). The component interactions and mutual affinities effectively mediate an immobilization of the chain segments in a dense disordered structure, modeled through the Hansen's solubility parameter concept and quantified on the nanolength scale by positron annihilation lifetime spectrum (PALS).


Assuntos
Madeira , Biomassa , Hidrólise , Lignina/química , Oxigênio/química , Polissacarídeos/química , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA