Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
FEMS Yeast Res ; 13(2): 180-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23122272

RESUMO

We report the characterization of five strains belonging to the halotolerant highly related Debaryomyces hansenii/fabryi species. The analysis performed consisted in studying tolerance properties, membrane characteristics, and cation incell amounts. We have specifically investigated (1) tolerance to different chemicals, (2) tolerance to osmotic and salt stress, (3) tolerance and response to oxidative stress, (4) reactive oxygen species (ROS) content, (5) relative membrane potential, (6) cell volume, (7) K(+) and Na(+) ion content, and (8) membrane fluidity. Unexpectedly, no direct relationship was found between one particular strain, Na(+) content and its tolerance to NaCl or between its ROS content and its tolerance to H(2)O(2). Results show that, although in general, human origin D. fabryi strains were more resistant to oxidative stress and presented shorter doubling times and smaller cell volume than food isolated D. hansenii ones, strains belonging to the same species can be significantly different. Debaryomyces fabryi CBS1793 strain highlighted for its extremely tolerant behavior when exposed to the diverse stress factors studied.


Assuntos
Pressão Osmótica , Estresse Oxidativo , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/fisiologia , Sais/toxicidade , Estresse Fisiológico , Divisão Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Citoplasma/química , Humanos , Fluidez de Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potássio/análise , Espécies Reativas de Oxigênio/análise , Saccharomycetales/química , Saccharomycetales/crescimento & desenvolvimento , Sódio/análise
2.
Int J Food Microbiol ; 158(1): 49-57, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22819715

RESUMO

Real-time detection of microorganisms involved in complex microbial process, such as wine fermentations, and evaluation of their physiological state is crucial to predict whether or not those microbial species will be able to impact the final product. In the present work we used a direct live/dead staining (LDS) procedure combined with fluorescence in situ hybridization (FISH) to simultaneously assess the identity and viability of Saccharomyces cerevisiae (Sc) and Hanseniaspora guilliermondii (Hg) during fermentations performed with single and mixed cultures. The population evolution of both yeasts was determined by plating and by LDS combined with species-specific FISH-probes labeled with Fluorescein. Since the FISH method involves the permeabilization of the cell membrane prior to hybridization and that it may influence the free diffusion of PI in and out of the cells, we optimized the concentration of this dye (0.5 µg of PI per 10(6) cells) for minimal diffusion (less than 2%). Fluorescent cells were enumerated by hemocytometry and flow cytometry. Results showed that the survival rate of Sc during mixed cultures was high throughout the entire process (60% of viable cells at the 9th day), while Hg began to die off at the 2nd day, exhibited 98% of dead cells at the 3rd day (45 g/l of ethanol) and became completely unculturable at the 4th day. However, under single culture fermentation the survival rate and culturability of Hg decreased at a much slower pace, exhibiting at the 7th day (67 g/l of ethanol) 8.7×10(4) CFU/ml and 85% of dead cells. Thus, our work demonstrated that the LDS-FISH method is able to simultaneously assess the viability and identity of these wine-related yeast species during alcoholic fermentation in a fast and reliable way. In order to validate PI-staining as a viability marker during alcoholic fermentation, we evaluated the effect of ethanol on the membrane permeability of Sc and Hg cells, as well as their capacity to recover membrane integrity after being exposed to different levels of ethanol (1%, 6%, 10%, 12% v/v). Results showed that while Sc cells were able to recover membrane integrity after ethanol exposure, Hg cells were not. However, under alcoholic fermentation Sc cells didn't recover membrane integrity after the mid-term (4-5 days) of alcoholic fermentation.


Assuntos
Fermentação , Hanseniaspora/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Membrana Celular/fisiologia , Etanol/metabolismo , Citometria de Fluxo , Hibridização in Situ Fluorescente , Saccharomyces cerevisiae/metabolismo , Coloração e Rotulagem , Vinho , Leveduras/metabolismo
3.
Microbiology (Reading) ; 153(Pt 10): 3586-3592, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17906155

RESUMO

Debaryomyces hansenii is a marine yeast that has to cope with different stress situations. Since changes in membrane properties can play an important function in adaptation, we have examined the fluidity and lipid composition of purified plasma membranes of D. hansenii grown at different external pH values and salt concentrations. Growth at low pH caused an increase in the sterol-to-phospholipid ratio and a decrease in fatty acid unsaturation which was reflected in decreased fluidity of the plasma membrane. High levels of NaCl increased the sterol-to-phospholipid ratio and fatty acid unsaturation, but did not significantly affect fluidity. The sterol-to-phospholipid ratios obtained in D. hansenii grown under any of these conditions were similar to the ratios that have been reported for halophilic/halotolerant black yeasts, but much smaller than those observed in the model yeast Saccharomyces cerevisiae.


Assuntos
Membrana Celular/química , Saccharomycetales/química , Saccharomycetales/fisiologia , Membrana Celular/fisiologia , Ácidos Graxos/química , Concentração de Íons de Hidrogênio , Fluidez de Membrana/fisiologia , Fosfolipídeos/análise , Saccharomycetales/efeitos dos fármacos , Salinidade , Cloreto de Sódio/química , Esteróis/análise
4.
Int J Lepr Other Mycobact Dis ; 73(3): 194-202, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16830641

RESUMO

Over the years, researchers have carried out experiments with Mycobacterium leprae obtained from either human multibacillary lesions, or infected armadillo tissues, or infected footpad tissues of conventional mice as well as athymic nu/nu mice. In general, these sources of leprosy bacilli are satisfactory for most biochemical and mouse footpad studies, but less than satisfactory for studies in cell biology and immunology where contaminating host tissues pose a serious problem. We examined the utility of a procedure for eliminating mouse footpad tissue from M. leprae suspension using sodium hydroxide solution and its subsequent effect on the viability of the organism by determining the rate of palmitic acid oxidation, bacterial membrane integrity, and growth in the mouse footpad. We found that treating M. leprae suspension, obtained from infected nu/nu mouse footpad, with 0.1N NaOH for 3 min was sufficient to remove the majority of mouse tissue without adversely affecting the viability of the organism. This is a simple and rapid method to get suspensions of nu/nu footpad-derived viable M. leprae essentially free of host tissues, which can be a research reagent for studying the host-pathogen relationship in leprosy. We also report here a method for labeling M. leprae with the fluorescent dye PKH26, without compromising on the viability of the organism. This method may be useful in intracellular trafficking studies of M. leprae or in other cell biology studies that require tracking of the bacteria using fluorescent tag. We observed the staining to be stable in vitro over considerable lengths of time and did not affect the viability of the bacteria.


Assuntos
Corantes Fluorescentes/farmacologia , Mycobacterium leprae/efeitos dos fármacos , Mycobacterium leprae/isolamento & purificação , Coloração e Rotulagem/métodos , Animais , Membrana Celular/fisiologia , Modelos Animais de Doenças , Pé/microbiologia , Hanseníase/microbiologia , Macrófagos Peritoneais/microbiologia , Camundongos , Camundongos Nus , Microscopia Eletrônica de Varredura , Mycobacterium leprae/crescimento & desenvolvimento , Mycobacterium leprae/ultraestrutura , Compostos Orgânicos/farmacologia , Oxirredução , Ácido Palmítico/metabolismo , Hidróxido de Sódio/farmacologia
5.
J Membr Biol ; 132(3): 253-65, 1993 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-7684088

RESUMO

The prime potassium channel from the tonoplast of Chara corallina has been analyzed in terms of an enzymatic kinetic model (Gradmann, Klieber & Hansen 1987, Biophys. J. 53:287) with respect to its selectivity for K+ over Rb+ and to its blockage by Cs+ and by Ca2+. The channel was investigated by patch-clamp techniques over a range of membrane voltages (Vm, referred to an extracytoplasmic electrical potential of zero) from -200 mV to +200 mV under various ionic conditions (0 to 300 mM K+, Rb+, Cs+, Ca2+, and Cl-) on the two sides of isolated patches. The experimental data are apparent steady-state current-voltage relationships under all experimental conditions used and amplitude histograms of the seemingly noisy open-channel currents in the presence of Cs+. The used model for K+ uniport comprises a reaction cycle of one binding site through four states, i.e., (1) K(+)-loaded and charged, facing the cytoplasm, (2) K(+)-loaded and charged facing the vacuole, (3) empty, facing the vacuole, and (4) empty, facing the cytoplasm. Vm enters the system in the form of a symmetric Eyring barrier between state 1 and 2. The numerical results for the individual rate constants are (in 10(6)s-1 for zero voltage and 1 M substrate concentration): k12: 1,410, k21: 3,370, k23: 105,000, k32: 10,600, k34: 194, k43: 270, k41: 5,290, k14: 15,800. For the additional presence of an alternate transportee (here Rb+), the model can be extended in an analog way by another two states ((5) Rb(+)-loaded and charged, facing cytoplasm, and (6) Rb(+)-loaded and charged, facing vacuole) and six more rate constants (k45: 300, k54: 240, k56: 498, k65: 4,510, k63: 4,070, k36: 403). This six-state model with its unique set of fourteen parameters satisfies the complete set of experimental data. If the competing substrate can be bound but not translocated (here Cs+ and Ca2+). k56 and k65 of the model are zero, and the stability constants Kcyt (= k36/k63) and Kvac (= k45/k54) turn out to be Kcyt(Ca2+): 250 M-1 x exp(Vm/(64 mV)), kvac(Ca2+): 10 M-1 x exp(-Vm/(66 mV)), Kcyt(Cs+): 0, and Kvac(Cs+): 46 M-2 x exp(-Vm/(12.25 mV)).(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Clorófitas/enzimologia , Canais de Potássio/fisiologia , Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Césio/metabolismo , Clorófitas/citologia , Clorófitas/fisiologia , Ativação do Canal Iônico/fisiologia , Canais Iônicos/fisiologia , Potássio/metabolismo , Rubídio/metabolismo
6.
Lepr Rev ; 57 Suppl 2: 15-20, 1986 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-3573941
7.
Parasite Immunol ; 8(2): 129-38, 1986 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-3517765

RESUMO

Abnormal phagocytosis of Mycobacterium leprae by macrophages of lepromatous patients was demonstrated under various conditions. The largest proportion of macrophages with an excessive bacterial load belonged to the lepromatous group of patients. Lepromatous macrophages treated with Cytochalasin B, an inhibitor of phagocytosis, exhibited a significantly lower degree of ingestion of heat-killed organisms whereas uptake of 'viable' organisms was not affected to the same extent. Regulation of phagocytosis was studied by noting the rate of phagocytosis of M. leprae after the ingestion of a primary particle viz carbonyl iron. Solely in lepromatous macrophages, phagocytosis of carbonyl iron did not result in a decreased uptake of M. leprae implying aberrant phagocytic activity. Lastly, excessive phagocytosis was always noted in macrophages of familial contacts of leprosy patients who displayed decreased Fc receptor expression after M. leprae ingestion. This is of interest since phagocytosis, like Fc receptor expression, is a membrane dependent event and other membrane associated defects have been recognized by us earlier in lepromatous macrophages.


Assuntos
Hanseníase/imunologia , Macrófagos/imunologia , Mycobacterium leprae/imunologia , Compostos Organometálicos , Antígenos de Bactérias/imunologia , Membrana Celular/fisiologia , Citocalasina B/farmacologia , Humanos , Ferro/farmacologia , Compostos Carbonílicos de Ferro , Macrófagos/ultraestrutura , Fagocitose/efeitos dos fármacos , Receptores Fc/imunologia , Tuberculose/imunologia
8.
Biochemistry ; 23(1): 166-76, 1984 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-6197994

RESUMO

The uptake of ethidium bromide by Escherichia coli K 12 cells has been studied by using 14C-labeled ethidium and spectrofluorometry on three E. coli strains: the first one (AB1157) has an ethidium-resistant phenotype; the second one derives from the first one after a single mutation (at 10 min on the E. coli genetic map) and has an ethidium-sensitive (Ebs) phenotype; the third one is the acrA strain which appeared to have the same phenotype as the Ebs strain. When the cells are in exponential growth, no ethidium enters wild-type cells, and a very limited amount of ethidium enters Ebs and acrA cells. Massive quantities of ethidium enter AB1157, Ebs, and acrA cells treated by uncouplers and respiring Ebs cells treated by the membrane ATPase-inhibitor dicyclohexylcarbodiimide. A small amount of ethidium enters cells treated in M9 succinate medium by metabolic inhibitors such as KCN or cells starved with oxygen in the same M9 medium. The amount of ethidium and ethidium dimer retained at equilibrium by either type of cell, and by cells infected by T5 phage, as well as the kinetics of influx and efflux, has been measured under a variety of situations (membrane energized or not, and/or membrane ATPase inhibited or not). Furthermore, it was shown that ethidium binds to both RNA and DNA when it enters CCCP-treated wild-type E. coli cells, whereas it binds mainly to DNA when it enters Ebs and acrA cells in exponential growth. As it will be discussed, it is difficult to account for the EthBr uptake by invoking only membrane functions and active transport. Therefore, it is proposed that the variations of the nucleic acid accessibility in E. coli cells might play a role in the control of this uptake. Accordingly, in ethidium-sensitive cells, the mutation would have caused a significant part of the chromosomal DNA (10-20%) to become accessible to ethidium. Hansen [Hansen M. T. (1982) Mutat. Res. 106, 209-216], after a study of the photobinding of psoralen to nucleic acids in the acrA mutant, also suggested that DNA environment was modified in acrA cells.


Assuntos
DNA Bacteriano/metabolismo , Escherichia coli/genética , Etídio/metabolismo , Mutação , RNA Bacteriano/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Ácido Edético/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Etídio/farmacologia , Cinética , Potenciais da Membrana/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Desacopladores/farmacologia
9.
J Membr Biol ; 68(1): 67-77, 1982.
Artigo em Inglês | MEDLINE | ID: mdl-7108943

RESUMO

Microplasmodia of Physarum polycephalum have been investigated by conventional electrophysiological techniques. In standard medium (30 mM K+, 4 mM Ca++, 3 mM Mg++, 18 mM citrate buffer, pH 4.7, 22 degrees C), the transmembrane potential difference Vm is around -100 mV and the membrane resistance about 0.25 omega m2. Vm is insensitive to light and changes of the Na+/K+ ratio in the medium. Without bivalent cations in the medium and/or in presence of metabolic inhibitors (CCCP, CN-, N3-), Vm drops to about 0 mV. Under normal conditions, Vm is very sensitive to external pH (pH0), displaying an almost Nernstian slope at pH0 = 3. However, when measured during metabolic inhibition, Vm shows no sensitivity to pH0 over the range 3 to 6, only rising (about 50 mV/pH) at pH0 = 6. Addition of glucose or sucrose (but not mannitol or sorbitol) causes rapid depolarization, which partially recovers over the next few minutes. Half-maximal peak depolarization (25 mV with glucose) was achieved with 1 mM of the sugar. Sugar-induced depolarization was insensitive to pH0. The results are discussed on the basis of Class-I models of charge transport across biomembranes (Hansen, Gradmann, Sanders and Slayman, 1981, J. Membrane Biol. 63:165-190). Three transport systems are characterized: 1) An electrogenic H+ extrusion pump with a stoichiometry of 2 H+ per metabolic energy equivalent. The deprotonated form of the pump seems to be negatively charged. 2) In addition to the passive K+ pathways, there is a passive H+ transport system; here the protonated form seems to be positively charged. 3) A tentative H+-sugar cotransport system operates far from thermodynamic equilibrium, carrying negative charge in its deprotonated states.


Assuntos
Membrana Celular/fisiologia , Physarum/fisiologia , Azidas/farmacologia , Cálcio/farmacologia , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Membrana Celular/efeitos dos fármacos , Cianetos/farmacologia , Glucose/metabolismo , Cinética , Potenciais da Membrana/efeitos dos fármacos , Potássio/farmacologia , Sódio/farmacologia , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA