Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Fungal Biol ; 122(10): 977-990, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30227933

RESUMO

The physiological behavior of Debaryomyces hansenii in response to saline stress and elevated pH was studied. The combination of 1 M NaCl salt and pH 8.0 was required to produce significant changes in the lag phase of growth and a consequent effect on viability. pH 8.0 in the absence or presence of 1 M NaCl produced changes in physiological functions such as respiration, acidification, rubidium transport, transmembrane potential, and fermentation. Our data indicated a stimulation of the H+-ATPase of the plasma membrane at pH 8.0, which increased the transmembrane potential and favored the entry of Na+; this effect was intensified in the presence of NaCl, so the increased energy expenditure resulting from H+ pumping and the extrusion of excess Na+ affected viability. The gene expression pattern studied by microarrays of cells incubated under saline conditions and high pH revealed a down-regulation in genes related to energy-producing pathways and in some genes involved in the cell cycle and DNA transcription, confirming our experimental hypothesis. Although D. hansenii can tolerate high pH and high salt concentrations, its physiological behavior, is better at pH 6.0 and in the absence of sodium; thus, it is an alkali-halotolerant yeast and not a halophilic yeast as previously proposed by other authors.


Assuntos
Metabolismo Energético/genética , Regulação Fúngica da Expressão Gênica , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Tolerância ao Sal/genética , Regulação para Baixo , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Saccharomycetales/genética , Cloreto de Sódio
2.
Nat Immunol ; 17(9): 1046-56, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27478939

RESUMO

Single-nucleotide variations in C13orf31 (LACC1) that encode p.C284R and p.I254V in a protein of unknown function (called 'FAMIN' here) are associated with increased risk for systemic juvenile idiopathic arthritis, leprosy and Crohn's disease. Here we set out to identify the biological mechanism affected by these coding variations. FAMIN formed a complex with fatty acid synthase (FASN) on peroxisomes and promoted flux through de novo lipogenesis to concomitantly drive high levels of fatty-acid oxidation (FAO) and glycolysis and, consequently, ATP regeneration. FAMIN-dependent FAO controlled inflammasome activation, mitochondrial and NADPH-oxidase-dependent production of reactive oxygen species (ROS), and the bactericidal activity of macrophages. As p.I254V and p.C284R resulted in diminished function and loss of function, respectively, FAMIN determined resilience to endotoxin shock. Thus, we have identified a central regulator of the metabolic function and bioenergetic state of macrophages that is under evolutionary selection and determines the risk of inflammatory and infectious disease.


Assuntos
Artrite Juvenil/genética , Doença de Crohn/genética , Infecções/genética , Hanseníase/genética , Macrófagos/imunologia , Proteínas/genética , Choque Séptico/genética , Trifosfato de Adenosina/metabolismo , Animais , Bacteriólise , Células Cultivadas , Metabolismo Energético , Ácido Graxo Sintase Tipo I/metabolismo , Predisposição Genética para Doença , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/metabolismo , Oxirredução , Polimorfismo de Nucleotídeo Único , Risco
3.
J Biol Chem ; 291(41): 21375-21387, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27555322

RESUMO

Mycobacterium leprae, the intracellular etiological agent of leprosy, infects Schwann promoting irreversible physical disabilities and deformities. These cells are responsible for myelination and maintenance of axonal energy metabolism through export of metabolites, such as lactate and pyruvate. In the present work, we observed that infected Schwann cells increase glucose uptake with a concomitant increase in glucose-6-phosphate dehydrogenase (G6PDH) activity, the key enzyme of the oxidative pentose pathway. We also observed a mitochondria shutdown in infected cells and mitochondrial swelling in pure neural leprosy nerves. The classic Warburg effect described in macrophages infected by Mycobacterium avium was not observed in our model, which presented a drastic reduction in lactate generation and release by infected Schwann cells. This effect was followed by a decrease in lactate dehydrogenase isoform M (LDH-M) activity and an increase in cellular protection against hydrogen peroxide insult in a pentose phosphate pathway and GSH-dependent manner. M. leprae infection success was also dependent of the glutathione antioxidant system and its main reducing power source, the pentose pathway, as demonstrated by a 50 and 70% drop in intracellular viability after treatment with the GSH synthesis inhibitor buthionine sulfoximine, and aminonicotinamide (6-ANAM), an inhibitor of G6PDH 6-ANAM, respectively. We concluded that M. leprae could modulate host cell glucose metabolism to increase the cellular reducing power generation, facilitating glutathione regeneration and consequently free-radical control. The impact of this regulation in leprosy neuropathy is discussed.


Assuntos
Metabolismo Energético , Glucose/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Hanseníase Tuberculoide/metabolismo , Mycobacterium leprae/metabolismo , Células de Schwann/metabolismo , Linhagem Celular , Humanos , Metionina/análogos & derivados , Metionina/farmacologia , Mitocôndrias/metabolismo , Células de Schwann/microbiologia
4.
Appl Microbiol Biotechnol ; 100(4): 1883-1890, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26610801

RESUMO

Phenol is one of the most common pollutants in many kinds of industrial wastewater, some of which are in high salinity, resulting in more difficulties of biodegradation. In this work, a halophilic strain capable of utilizing phenol as sole source of carbon and energy in both hypersaline and no-salt media was isolated and identified as genus Debaryomyces. The optimization of environmental parameters including phenol concentration, pH, dissolved oxygen as well as salinity was carried out and tolerance of heavy metals by the strain was evaluated. The strain Debaryomyces sp. was able to grow in culture when initial phenol concentration, pH, agitation and salinity were at wide ranges (0-1200 mg L(-1), 4.0-10.0, 50-200 rpm, 0 %-15 %, respectively). High removal efficiency was hardly affected in the presence of 5 mM of Zn (II) and Mn (II). Under optimal conditions (pH 6.0, 200 rpm, 1 % of salinity without heavy metals), 500 mg L(-1) of phenol could be completely degraded within 32 h. The high removal efficiency of phenol by the strain with significant variations of process parameters might contribute to the bioremediation of phenol-polluted environments under hypersaline or no-salt conditions.


Assuntos
Debaryomyces/efeitos dos fármacos , Debaryomyces/metabolismo , Tolerância a Medicamentos , Metais Pesados/toxicidade , Fenol/metabolismo , Biotransformação , Carbono/metabolismo , Meios de Cultura/química , Metabolismo Energético , Concentração de Íons de Hidrogênio , Oxigênio , Salinidade
5.
s.l; s.n; 2016. 13 p. ilus, tab, graf.
Não convencional em Inglês | SES-SP, HANSEN, HANSENIASE, SESSP-ILSLPROD, SES-SP, SESSP-ILSLACERVO, SES-SP | ID: biblio-1095631

RESUMO

Mycobacterium leprae, the intracellular etiological agent of leprosy, infects Schwann promoting irreversible physical disabilities and deformities. These cells are responsible for myelination and maintenance of axonal energy metabolism through export of metabolites, such as lactate and pyruvate. In the present work, we observed that infected Schwann cells increase glucose uptake with a concomitant increase in glucose-6-phosphate dehydrogenase (G6PDH) activity, the key enzyme of the oxidative pentose pathway. We also observed a mitochondria shutdown in infected cells and mitochondrial swelling in pure neural leprosy nerves. The classic Warburg effect described in macrophages infected by Mycobacterium avium was not observed in our model, which presented a drastic reduction in lactate generation and release by infected Schwann cells. This effect was followed by a decrease in lactate dehydrogenase isoform M (LDH-M) activity and an increase in cellular protection against hydrogen peroxide insult in a pentose phosphate pathway and GSH-dependent manner. M. leprae infection success was also dependent of the glutathione antioxidant system and its main reducing power source, the pentose pathway, as demonstrated by a 50 and 70% drop in intracellular viability after treatment with the GSH synthesis inhibitor buthionine sulfoximine, and aminonicotinamide (6-ANAM), an inhibitor of G6PDH 6-ANAM, respectively. We concluded that M. leprae could modulate host cell glucose metabolism to increase the cellular reducing power generation, facilitating glutathione regeneration and consequently free-radical control. The impact of this regulation in leprosy neuropathy is discussed.


Assuntos
Humanos , Células de Schwann/metabolismo , Células de Schwann/microbiologia , Hanseníase Tuberculoide/metabolismo , Linhagem Celular , Ácido Láctico/metabolismo , Metabolismo Energético , Glucose/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Metionina/análogos & derivados , Metionina/farmacologia , Mitocôndrias/metabolismo , Mycobacterium leprae/metabolismo
6.
J Bacteriol ; 197(23): 3698-707, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26391209

RESUMO

UNLABELLED: Mycobacterium leprae induces the formation of lipid droplets, which are recruited to pathogen-containing phagosomes in infected macrophages and Schwann cells. Cholesterol is among the lipids with increased abundance in M. leprae-infected cells, and intracellular survival relies on cholesterol accumulation. The present study investigated the capacity of M. leprae to acquire and metabolize cholesterol. In silico analyses showed that oxidation of cholesterol to cholest-4-en-3-one (cholestenone), the first step of cholesterol degradation catalyzed by the enzyme 3ß-hydroxysteroid dehydrogenase (3ß-HSD), is apparently the only portion of the cholesterol catabolic pathway seen in Mycobacterium tuberculosis preserved by M. leprae. Incubation of bacteria with radiolabeled cholesterol confirmed the in silico predictions. Radiorespirometry and lipid analyses performed after incubating M. leprae with [4-(14)C]cholesterol or [26-(14)C]cholesterol showed the inability of this pathogen to metabolize the sterol rings or the side chain of cholesterol as a source of energy and carbon. However, the bacteria avidly incorporated cholesterol and, as expected, converted it to cholestenone both in vitro and in vivo. Our data indicate that M. leprae has lost the capacity to degrade and utilize cholesterol as a nutritional source but retains the enzyme responsible for its oxidation to cholestenone. Thus, the essential role of cholesterol metabolism in the intracellular survival of M. leprae is uncoupled from central carbon metabolism and energy production. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. IMPORTANCE: Our study focused on the obligate intracellular pathogen Mycobacterium leprae and its capacity to metabolize cholesterol. The data make an important contribution for those interested in understanding the mechanisms of mycobacterial pathogenesis, since they indicate that the essential role of cholesterol for M. leprae intracellular survival does not rely on its utilization as a nutritional source. Our findings reinforce the complexity of cholesterol's role in sustaining M. leprae infection. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies.


Assuntos
Carbono/metabolismo , Colesterol/metabolismo , Mycobacterium leprae/metabolismo , Metabolismo Energético , Humanos , Hanseníase/microbiologia , Viabilidade Microbiana , Mycobacterium leprae/genética , Mycobacterium leprae/crescimento & desenvolvimento
7.
FEMS Microbiol Lett ; 362(1): 1-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25790503

RESUMO

Microbial communities living on cheese surfaces are composed of various bacteria, yeasts and molds that interact together, thus generating the typical sensory properties of a cheese. Physiological and genomic investigations have revealed important functions involved in the ability of microorganisms to establish themselves at the cheese surface. These functions include the ability to use the cheese's main energy sources, to acquire iron, to tolerate low pH at the beginning of ripening and to adapt to high salt concentrations and moisture levels. Horizontal gene transfer events involved in the adaptation to the cheese habitat have been described, both for bacteria and fungi. In the future, in situ microbial gene expression profiling and identification of genes that contribute to strain fitness by massive sequencing of transposon libraries will help us to better understand how cheese surface communities function.


Assuntos
Bactérias/crescimento & desenvolvimento , Biota , Queijo/microbiologia , Fungos/crescimento & desenvolvimento , Adaptação Biológica , Adaptação Fisiológica , Bactérias/genética , Bactérias/metabolismo , Metabolismo Energético , Fungos/genética , Fungos/metabolismo , Transferência Genética Horizontal , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Salinidade
8.
Actas Dermosifiliogr ; 106(3): 189-94, 2015 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-25129580

RESUMO

Darwinian medicine, or evolutionary medicine, regards some pathological conditions as attempts by the organism to solve a problem or develop defense mechanisms. At certain stages of human evolution, some diseases may have conferred a selective advantage. Psoriasis is a high-penetrance multigenic disorder with prevalence among whites of up to 3%. Psoriatic lesions have been linked with enhanced wound-healing qualities and greater capacity to fight infection. Leprosy, tuberculosis, and infections caused by viruses similar to human immunodeficiency virus have been postulated as environmental stressors that may have selected for psoriasis-promoting genes in some human populations. The tendency of patients with severe psoriasis to develop metabolic syndrome may reflect the body's attempt to react to environmental stresses and warning signs by triggering insulin resistance and fat storage.


Assuntos
Evolução Biológica , Aptidão Genética , Psoríase/genética , Adaptação Biológica , Peso ao Nascer , Metabolismo Energético , Etnicidade/genética , Interação Gene-Ambiente , Predisposição Genética para Doença , Humanos , Síndrome Metabólica/etiologia , Penetrância , Psoríase/complicações , Psoríase/epidemiologia , Psoríase/fisiopatologia , Seleção Genética , Dermatopatias Infecciosas/genética , Dermatopatias Infecciosas/prevenção & controle , Cicatrização
9.
PLoS One ; 7(1): e30616, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22291999

RESUMO

Intrauterine growth restriction (IUGR) is closely linked with metabolic diseases, appetite disorders and obesity at adulthood. Leptin, a major adipokine secreted by adipose tissue, circulates in direct proportion to body fat stores, enters the brain and regulates food intake and energy expenditure. Deficient leptin neuronal signalling favours weight gain by affecting central homeostatic circuitry. The aim of this study was to determine if leptin resistance was programmed by perinatal nutritional environment and to decipher potential cellular mechanisms underneath.We clearly demonstrated that 5 months old IUGR rats develop a decrease of leptin sentivity, characterized by no significant reduction of food intake following an intraperitoneal injection of leptin. Apart from the resistance to leptin injection, results obtained from IUGR rats submitted to rapid catch-up growth differed from those of IUGR rats with no catch-up since we observed, for the first group only, fat accumulation, increased appetite for food rich in fat and increased leptin synthesis. Centrally, the leptin resistant state of both groups was associated with a complex and not always similar changes in leptin receptor signalling steps. Leptin resistance in IUGR rats submitted to rapid catch-up was associated with alteration in AKT and mTOR pathways. Alternatively, in IUGR rats with no catch-up, leptin resistance was associated with low hypothalamic expression of LepRa and LepRb. This study reveals leptin resistance as an early marker of metabolic disorders that appears before any evidence of body weight increase in IUGR rats but whose mechanisms could depend of nutritional environment of the perinatal period.


Assuntos
Sistema Nervoso Central/metabolismo , Metabolismo Energético/fisiologia , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/reabilitação , Crescimento e Desenvolvimento/fisiologia , Leptina/metabolismo , Animais , Animais Recém-Nascidos , Sistema Nervoso Central/fisiologia , Resistência a Medicamentos/genética , Resistência a Medicamentos/fisiologia , Metabolismo Energético/genética , Feminino , Retardo do Crescimento Fetal/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Crescimento e Desenvolvimento/genética , Homeostase/genética , Homeostase/fisiologia , Leptina/genética , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
10.
Physiol Behav ; 105(5): 1208-13, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22226990

RESUMO

Thermoregulatory behavior and feeding status are strongly related in ectotherms. A trade-off between maintenance of energy balance and digestion efficiency has been recently proposed to affect thermoregulation in these animals. On the other hand, competition for basking sites has been described between Iberian turtles and the introduced red-eared slider (Trachemys scripta elegans). T. scripta negatively interferes with basking behavior of native turtles and benefits from a greater capacity to retain body heat, which may likely result in thermoregulatory advantages for the introduced sliders. Consequently, complex effects and alterations in metabolic rates of native turtles might derive from a deficient basking behavior. We compared the basking requirements of the endangered native Spanish terrapin (Mauremys leprosa) and those of the introduced red-eared slider, analyzing the upper set point temperature (USP) (defined as the body temperature at which basking ceased) of both native and introduced turtles, under feeding and fasting conditions. We found higher values of USP in the native species, and a reduction of this temperature associated with food deprivation in the two turtle species. This adjustment of thermoregulatory behavior to the nutritional status found in freshwater turtles suggests that ectotherms benefit from metabolic depression as an adaptive mechanism to preserve energy during periods of fasting. However, a reduction in metabolic rates induced by competition with sliders might lead M. leprosa to a prolonged deficiency of their physiological functions, thus incurring increased predation risk and health costs, and ultimately favoring the recession of this native species in Mediterranean habitats.


Assuntos
Comportamento Animal/fisiologia , Regulação da Temperatura Corporal , Ingestão de Alimentos , Metabolismo Energético , Espécies Introduzidas , Tartarugas/fisiologia , Adaptação Fisiológica , Animais , Comportamento Competitivo , Privação de Alimentos/fisiologia , Especificidade da Espécie
11.
Biotechnol Bioeng ; 102(4): 1062-73, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18988265

RESUMO

In order to improve the biotechnological production of xylitol, the metabolism of Debaryomyces hansenii NRRL Y-7426 in corncob hemicellulose hydrolyzate has been investigated under different conditions, where either maintenance or growth requirements predominated. For this purpose, the experimental results of two sets of batch bioconversions carried out alternatively varying the starting xylose concentration in the hydrolyzate (65.6 < or = S(0) < or = 154.7 g L(-1)) or the initial biomass level (3.0 < or = X(0) < or = 54.6 g(DM) L(-1)) were used to fit a metabolic model consisting of carbon material and ATP balances based on five main activities, namely fermentative assimilation of pentoses, semi-aerobic pentose-to-pentitol bioconversion, biomass growth on pentoses, catabolic oxidation of pentoses, and acetic acid and NADH regeneration by the electron transport system. Such an approach allowed separately evaluating the main bioenergetic constants of this microbial system, that is, the specific rates of ATP and xylose consumption due to maintenance (m(ATP) = 21.0 mmol(ATP) C-mol(DM) (-1)h(-1); m(Xyl) = 6.5 C-mmol(Xyl) C-mol(DM) (-1)h(-1)) and the true yields of biomass on ATP (Y(ATP) (max) = 0.83 C-mol(DM) mol(ATP) (-1)) and on xylose (Y(Xyl) (max) = 0.93 C-mol(DM) C-mol(Xyl) (-1)). The results of this study highlighted that the system, at very high S(0) and X(0) values, dramatically increased its energy requirements for cell maintenance, owing to the occurrence of stressing conditions. In particular, for S(0) > 130 g L(-1), these activities required an ATP consumption of about 2.1 mol(ATP) L(-1), that is, a value about seven- to eightfold that observed at low substrate concentration. Such a condition led to an increase in the fraction of ATP addressed to cell maintenance from 47% to 81%. On the other hand, the very high percentage of ATP addressed to maintenance (> 96%) at very high cell concentration (X(0) > or = 25 g(DM) L(-1)) was likely due to the insufficient substrate to sustain the growth.


Assuntos
Polissacarídeos/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Xilitol/metabolismo , Xilose/metabolismo , Ácido Acético/metabolismo , Trifosfato de Adenosina/metabolismo , Biomassa , Metabolismo Energético , NAD/metabolismo , Pentoses/metabolismo , Zea mays/metabolismo
12.
FEMS Microbiol Rev ; 30(6): 906-25, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17064286

RESUMO

The genus Mycobacterium comprises significant pathogenic species that infect both humans and animals. One species within this genus, Mycobacterium tuberculosis, is the primary killer of humans resulting from bacterial infections. Five mycobacterial genomes belonging to four different species (M. tuberculosis, Mycobacterium bovis, Mycobacterium leprae and Mycobacterium avium ssp. paratuberculosis) have been sequenced to date and another 14 mycobacterial genomes are at various stages of completion. A comparative analysis of the gene products of key metabolic pathways revealed that the major differences among these species are in the gene products constituting the cell wall and the gene families encoding the acidic glycine-rich (PE/PPE/PGRS) proteins. Mycobacterium leprae has evolved by retaining a minimal gene set for most of the gene families, whereas M. avium ssp. paratuberculosis has acquired some of the virulence factors by lateral gene transfer.


Assuntos
Mycobacterium/genética , Aminoácidos/biossíntese , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/química , Metabolismo Energético , Genoma Bacteriano , Humanos , Metabolismo dos Lipídeos , Proteínas de Membrana/genética , Mycobacterium/metabolismo , Mycobacterium/patogenicidade , Infecções por Mycobacterium/microbiologia , Especificidade da Espécie , Virulência
13.
Biotechnol Prog ; 19(3): 706-13, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12790628

RESUMO

The effect of oxygenation on xylitol production by the yeast Debaryomyces hansenii has been investigated in this work using the liquors from corncob hydrolysis as the fermentation medium. The concentrations of consumed substrates (glucose, xylose, arabinose, acetate and oxygen) and formed products (xylitol, arabitol, ethanol, biomass and carbon dioxide) have been used, together with those previously obtained varying the hydrolysis technique, the level of adaptation of the microorganism, the sterilization procedure and the initial substrate and biomass concentrations, in carbon material balances to evaluate the percentages of xylose consumed by the yeast for the reduction to xylitol, alcohol fermentation, respiration and cell growth. The highest xylitol concentration (71 g/L) and volumetric productivity (1.5 g/L.h) were obtained semiaerobically using detoxified hydrolyzate produced by autohydrolysis-posthydrolysis, at starting levels of xylose (S(0)) and biomass (X(0)) of about 100 g/L and 12 g(DM)/L, respectively. No less than 80% xylose was addressed to xylitol production under these conditions. The experimental data collected in this work at variable oxygen levels allowed estimating a P/O ratio of 1.16 mol(ATP)/mol(O). The overall ATP requirements for biomass production and maintenance demonstrated to remarkably increase with X(0) and for S(0) >or= 130 g/L and to reach minimum values (1.9-2.1 mol(ATP)/C-mol(DM)) just under semiaerobic conditions favoring xylitol accumulation.


Assuntos
Trifosfato de Adenosina/metabolismo , Reatores Biológicos/microbiologia , Modelos Biológicos , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Xilitol/biossíntese , Xilose/metabolismo , Zea mays/química , Adaptação Fisiológica/fisiologia , Carbono/metabolismo , Simulação por Computador , Metabolismo Energético/fisiologia , Transferência de Energia/fisiologia , Hidrólise , Consumo de Oxigênio/fisiologia , Extratos Vegetais/metabolismo
14.
Ginebra; OMS; 2003. 181 p. tab.(OMS, Serie de Informes Tecnicos, 916).
Monografia em Espanhol | LILACS, HANSEN, HANSENIASE, SESSP-ILSLACERVO, SES-SP | ID: biblio-1083465
15.
Rev Latinoam Microbiol ; 44(3-4): 137-56, 2002.
Artigo em Espanhol | MEDLINE | ID: mdl-17061488

RESUMO

The term halophile is used for all those organisms belonging to hypersaline habitats; they constitute an interesting class of organisms able to compete successfully in salt water and to resist its denaturing effects. A wide diversity of microorganisms, prokaryotic and eukaryotic belong to this category. Halophile organisms have strategies allowing them not only to withstand osmotic stress, but also to function better in the presence of salt, in spite of maintaining high intracellular concentrations of salt, partly due to the synthesis of compatible solutes that allow them to balance their osmotic pressure. We describe the characteristics of some halophile organisms and D. hansenii (halophile yeast), that allow them to resist high concentrations of salt. The interest to know the great diversity microorganisms living in hypersaline habitats is growing, and has begun to be the center of recent investigations, since halophile organisms produce an wide variety of biomolecules that can be used for different applications. In this review we describe some mechanisms with which some halophile organisms count to resist the high concentration of salts, mainly NaCl.


Assuntos
Adaptação Fisiológica , Halobacteriales/fisiologia , Saccharomycetales/fisiologia , Animais , Proteínas de Bactérias/fisiologia , Biotecnologia/métodos , Clorófitas/fisiologia , Metabolismo Energético , Ativação Enzimática , Células Eucarióticas/efeitos dos fármacos , Células Eucarióticas/fisiologia , Proteínas Fúngicas/fisiologia , Regulação Bacteriana da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Halobacteriales/efeitos dos fármacos , Líquido Intracelular/química , Lipídeos de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Concentração Osmolar , Pressão Osmótica , Fenômenos Fisiológicos Vegetais , Saccharomycetales/efeitos dos fármacos , Solução Salina Hipertônica/farmacologia , Solubilidade , Álcoois Açúcares/metabolismo , Transcrição Gênica
16.
Nature ; 409(6823): 1007-11, 2001 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11234002

RESUMO

Leprosy, a chronic human neurological disease, results from infection with the obligate intracellular pathogen Mycobacterium leprae, a close relative of the tubercle bacillus. Mycobacterium leprae has the longest doubling time of all known bacteria and has thwarted every effort at culture in the laboratory. Comparing the 3.27-megabase (Mb) genome sequence of an armadillo-derived Indian isolate of the leprosy bacillus with that of Mycobacterium tuberculosis (4.41 Mb) provides clear explanations for these properties and reveals an extreme case of reductive evolution. Less than half of the genome contains functional genes but pseudogenes, with intact counterparts in M. tuberculosis, abound. Genome downsizing and the current mosaic arrangement appear to have resulted from extensive recombination events between dispersed repetitive sequences. Gene deletion and decay have eliminated many important metabolic activities including siderophore production, part of the oxidative and most of the microaerophilic and anaerobic respiratory chains, and numerous catabolic systems and their regulatory circuits.


Assuntos
Genoma Bacteriano , Mycobacterium leprae/genética , Animais , Tatus , DNA Bacteriano , Metabolismo Energético , Evolução Molecular , Transferência Genética Horizontal , Humanos , Hanseníase/microbiologia , Dados de Sequência Molecular , Família Multigênica , Mycobacterium leprae/metabolismo , Análise de Sequência de DNA
18.
Acta Leprol ; 7 Suppl 1: 30-2, 1989.
Artigo em Inglês | MEDLINE | ID: mdl-2504000

RESUMO

ATP measurements have been earlier used to study the effect of various nutrients on the growth and multiplication of M. leprae. In a preliminary study, we had observed that glycerol and asparagine stimulated the ATP synthesis by M. leprae but this was marginal and not sustained. We have extended the study to investigate the role of various environmental factors which could affect this ATP synthesis. It has been observed that ATP synthesis was better and sustained for a longer period i.e. upto 2 weeks if the M. leprae were incubated at pH 6-6.5 and at 30-33 degrees C in the modified Dubos and Sauton's media. The pH and temperature above these values were suboptimal. It is concluded that temperature and pH are important factors for maintenance and synthesis of ATP by M. leprae.


Assuntos
Trifosfato de Adenosina/biossíntese , Mycobacterium leprae/metabolismo , Metabolismo Energético , Concentração de Íons de Hidrogênio , Temperatura
19.
Acta Leprol ; 7 Suppl 1: 25-9, 1989.
Artigo em Inglês | MEDLINE | ID: mdl-2548362

RESUMO

The enzyme adenylate kinase (ATP:AMP phosphotransferase) was purified as described previously [Biochim. Biophys. Acta 869: 350 (1986)] with an additional step involving affinity chromatography on Cibacron Blue. The molecular weight of the final enzyme preparation was estimated to be 22,500 on polyacrylamide-gel electrophoresis under denaturing conditions. The preliminary amino acid analysis indicated the presence of two histidine residues. Photooxidation in the presence of methylene blue caused complete inactivation of the enzyme, but the loss of activity could be prevented by the addition of ATP, AMP or adenosine-(5')-pentaphospho-(5')-adenosine, indicating that at least one histidine residue is involved at the active site. A circular dichroic study indicated that the enzyme consists of 24% alpha-helix, 30% beta-structure, and 46% random coil. The bacterial cells induced with antimycin A and light (particularly with the former) appeared to have somewhat increased adenylate kinase activity, although the Km and Vmax values were unchanged.


Assuntos
Adenilato Quinase/isolamento & purificação , Mycobacterium/enzimologia , Micobactérias não Tuberculosas/enzimologia , Fosfotransferases/isolamento & purificação , Nucleotídeos de Adenina/metabolismo , Adenilato Quinase/antagonistas & inibidores , Adenilato Quinase/metabolismo , Aminoácidos/análise , Sítios de Ligação , Fosfatos de Dinucleosídeos/farmacologia , Metabolismo Energético , Peso Molecular , Conformação Proteica
20.
Arch Microbiol ; 147(4): 358-63, 1987 May.
Artigo em Inglês | MEDLINE | ID: mdl-3304183

RESUMO

Changes in glycerol production and two parameters related to energy metabolism i.e. the heat production rate and the ATP pool, were assayed during growth of Saccharomyces cerevisiae and Debaryomyces hansenii in 4 mM and 1.35 M NaCl media. For both of the yeasts, the specific ATP pool changed during the growth cycle and reached maximum values around 10 nmol per mg dry weight in both types of media. The levels of glycerol were markedly enhanced by high salinity. In the presence of 1.35 M NaCl, D. hansenii retained most of its glycerol produced intracellularly, while S. cerevisiae extruded most of the glycerol to the environment. The intracellular glycerol level of S. cerevisiae equalled or exceeded that of D. hansenii, however, with values never lower than 3 mumol per mg dry weight at all phases of growth. When D. hansenii was grown at this high salinity the intracellular level of glycerol was found to correlate with the specific heat production rate. No such correlation was found for S. cerevisiae. We concluded that during salt stress, D. hansenii possesses the capacity to regulate the metabolism of glycerol to optimize growth, while S. cerevisiae may not be able to regulate when exposed to different demands on the glycerol metabolism.


Assuntos
Trifosfato de Adenosina/metabolismo , Glicerol/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Cloreto de Sódio/farmacologia , Metabolismo Energético , Temperatura Alta , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomycetales/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA