Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299217

RESUMO

The mycobacterial cell wall is composed of large amounts of lipids with varying moieties. Some mycobacteria species hijack host cells and promote lipid droplet accumulation to build the cellular environment essential for their intracellular survival. Thus, lipids are thought to be important for mycobacteria survival as well as for the invasion, parasitization, and proliferation within host cells. However, their physiological roles have not been fully elucidated. Recent studies have revealed that mycobacteria modulate the peroxisome proliferator-activated receptor (PPAR) signaling and utilize host-derived triacylglycerol (TAG) and cholesterol as both nutrient sources and evasion from the host immune system. In this review, we discuss recent findings that describe the activation of PPARs by mycobacterial infections and their role in determining the fate of bacilli by inducing lipid metabolism, anti-inflammatory function, and autophagy.


Assuntos
Infecções por Mycobacterium/microbiologia , Mycobacterium/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Animais , Autofagia/fisiologia , Colesterol/metabolismo , Humanos , Metabolismo dos Lipídeos , Mycobacterium/crescimento & desenvolvimento , Mycobacterium/imunologia , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Transdução de Sinais
2.
PLoS Negl Trop Dis ; 14(10): e0008850, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075048

RESUMO

Leprosy is a chronic infectious disease caused by Mycobacterium leprae (M. leprae). In lepromatous leprosy (LL), skin macrophages, harboring extensive bacterial multiplication, gain a distinctive foamy appearance due to increased intracellular lipid load. To determine the mechanism by which M. leprae modifies the lipid homeostasis in host cells, an in vitro M. leprae infection system, using human macrophage precursor THP-1 cells and M. leprae prepared from the footpads of nude mice, was employed. RNA extracted from skin smear samples of patients was used to investigate host gene expressions before and after multidrug therapy (MDT). We found that a cluster of peroxisome proliferator-activated receptor (PPAR) target genes associated with adipocyte differentiation were strongly induced in M. leprae-infected THP-1 cells, with increased intracellular lipid accumulation. PPAR-δ and PPAR-γ expressions were induced by M. leprae infection in a bacterial load-dependent manner, and their proteins underwent nuclear translocalization after infection, indicating activation of PPAR signaling in host cells. Either PPAR-δ or PPAR-γ antagonist abolished the effect of M. leprae to modify host gene expressions and inhibited intracellular lipid accumulation in host cells. M. leprae-specific gene expressions were detected in the skin smear samples both before and after MDT, whereas PPAR target gene expressions were dramatically diminished after MDT. These results suggest that M. leprae infection activates host PPAR signaling to induce an array of adipocyte differentiation-associated genes, leading to accumulation of intracellular lipids to accommodate M. leprae parasitization. Certain PPAR target genes in skin lesions may serve as biomarkers for monitoring treatment efficacy.


Assuntos
Células Espumosas/microbiologia , Hanseníase/metabolismo , Macrófagos/microbiologia , Mycobacterium leprae/fisiologia , PPAR delta/metabolismo , PPAR gama/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Adipócitos/microbiologia , Animais , Diferenciação Celular , Células Espumosas/metabolismo , Humanos , Hansenostáticos/uso terapêutico , Hanseníase/tratamento farmacológico , Hanseníase/genética , Hanseníase/microbiologia , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Camundongos , Camundongos Nus , Mycobacterium leprae/efeitos dos fármacos , PPAR delta/genética , PPAR gama/genética , Pele/metabolismo , Pele/microbiologia
4.
Food Funct ; 11(5): 4591-4604, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432239

RESUMO

The potential effects of Komagataeibacter hansenii CGMCC 3917 cells on alcohol-induced liver injury and their probable mechanisms were investigated. Male Kunming mice were orally administered with alcohol (10 mL per kg BW) alone or in combination with administration of K. hansenii CGMCC 3917 cells at 2 × 108 and 2 × 106 CFUs for 10 weeks. Administration of strain CGMCC 3917 cells, especially high dose administration, decreased the liver weights, fat gain, and fatty-acid metabolism-related enzyme SCD-1, ACC and FAS expressions and endotoxin release, which were elevated by alcohol treatment. Furthermore, the total contents of long chain fatty acids of the liver and serum in alcohol-treated mice supplemented with a high dose of strain CGMCC 3917 cells were decreased to 5.44 ± 0.19 µg mL-1 and 3.66 ± 0.15 µg mL-1 from 6.65 ± 0.31 µg mL-1 and 4.52 ± 0.21 µg mL-1, respectively. Conversely, the SCFAs decreased by ethanol treatment, particularly the acetic acid, propionic acid and butyric acid, were obviously enhanced in the faeces, colon and cecum of the mice supplemented with strain CGMCC 3917 cells. Moreover, strain CGMCC 3917 cells could regulate gut microbiome by significantly decreasing the abundance of Actinobacteria, Proteobacteria and Firmicutes, and dramatically increasing the abundance of Bacteroidetes in alcohol-treated mice. These findings suggest that K. hansenii CGMCC 3917 cells alleviate alcohol-induced liver damage via regulating fatty acid metabolism and intestinal microbiota diversity in mice.


Assuntos
Acetobacteraceae , Microbioma Gastrointestinal , Hepatopatias Alcoólicas/prevenção & controle , Animais , Modelos Animais de Doenças , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos , Fitoterapia
5.
World J Microbiol Biotechnol ; 35(11): 170, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673816

RESUMO

Debaryomyces hansenii is a halotolerant yeast of importance in basic and applied research. Previous reports hinted about possible links between saline and oxidative stress responses in this yeast. The aim of this work was to study that hypothesis at different molecular levels, investigating after oxidative and saline stress: (i) transcription of seven genes related to oxidative and/or saline responses, (ii) activity of two main anti-oxidative enzymes, (iii) existence of common metabolic intermediates, and (iv) generation of damages to biomolecules as lipids and proteins. Our results showed how expression of genes related to oxidative stress was induced by exposure to NaCl and KCl, and, vice versa, transcription of some genes related to osmotic/salt stress responses was regulated by H2O2. Moreover, and contrary to S. cerevisiae, in D. hansenii HOG1 and MSN2 genes were modulated by stress at their transcriptional level. At the enzymatic level, saline stress also induced antioxidative enzymatic defenses as catalase and glutathione reductase. Furthermore, we demonstrated that both stresses are connected by the generation of intracellular ROS, and that hydrogen peroxide can affect the accumulation of in-cell sodium. On the other hand, no significant alterations in lipid oxidation or total glutathione content were observed upon exposure to both stresses tested. The results described in this work could help to understand the responses to both stressors, and to improve the biotechnological potential of D. hansenni.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Estresse Oxidativo/fisiologia , Saccharomycetales/fisiologia , Estresse Salino/fisiologia , Antioxidantes , Catalase/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio , Metabolismo dos Lipídeos , Osmorregulação/genética , Osmorregulação/fisiologia , Estresse Oxidativo/genética , Cloreto de Potássio/metabolismo , Proteômica , Saccharomycetales/genética , Estresse Salino/genética , Sódio/metabolismo , Cloreto de Sódio/metabolismo , Fatores de Transcrição/genética
6.
J Biol Chem ; 293(14): 5172-5184, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29472294

RESUMO

Mycolic acids are the hallmark of the cell envelope in mycobacteria, which include the important human pathogens Mycobacterium tuberculosis and Mycobacterium leprae Mycolic acids are very long C60-C90 α-alkyl ß-hydroxy fatty acids having a variety of functional groups on their hydrocarbon chain that define several mycolate types. Mycobacteria also produce an unusually large number of putative epoxide hydrolases, but the physiological functions of these enzymes are still unclear. Here, we report that the mycobacterial epoxide hydrolase EphD is involved in mycolic acid metabolism. We found that orthologs of EphD from M. tuberculosis and M. smegmatis are functional epoxide hydrolases, cleaving a lipophilic substrate, 9,10-cis-epoxystearic acid, in vitro and forming a vicinal diol. The results of EphD overproduction in M. smegmatis and M. bovis BCG Δhma strains producing epoxymycolic acids indicated that EphD is involved in the metabolism of these forms of mycolates in both fast- and slow-growing mycobacteria. Moreover, using MALDI-TOF-MS and 1H NMR spectroscopy of mycolic acids and lipids isolated from EphD-overproducing M. smegmatis, we identified new oxygenated mycolic acid species that accumulated during epoxymycolate depletion. Disruption of the ephD gene in M. tuberculosis specifically impaired the synthesis of ketomycolates and caused accumulation of their precursor, hydroxymycolate, indicating either direct or indirect involvement of EphD in ketomycolate biosynthesis. Our results clearly indicate that EphD plays a role in metabolism of oxygenated mycolic acids in mycobacteria.


Assuntos
Epóxido Hidrolases/metabolismo , Ácidos Micólicos/metabolismo , Parede Celular/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Espectrometria de Massas/métodos , Mycobacterium/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo
7.
Gene ; 643: 26-34, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29208413

RESUMO

Mycobacterium leprae has a reduced genome size due to the reductive evolution over a long period of time. Lipid metabolism plays an important role in the life cycle and pathogenesis of this bacterium. In comparison to 26 lip genes (Lip A-Z) of M. tuberculosis, M. leprae retained only three orthologs indicating their importance in its life cycle. ML0314c (LipU) is one of them. It is conserved throughout the mycobacterium species. Bioinformatics analysis showed the presence of an α/ß hydrolase fold and 'GXSXG' characteristic of the esterases/lipases. The gene was expressed in E. coli and purified to homogeneity. It showed preference towards short chain esters with pNP-acetate as the preferred substrate. The enzyme showed optimal activity at 45°C and pH8.0. ML0314c protein was stable between temperatures ranging from 20 to 60°C and pH5.0-8.0, i.e., relatively acidic and neutral conditions. The active site residues predicted bioinformatically were confirmed to be Ser168, Glu267, and His297 by site directed mutagenesis. E-serine, DEPC and Tetrahydrolipstatin (THL) completely inhibited the activity of ML0314c. The protein was localized in cell wall and extracellular medium. Several antigenic epitopes were predicted in ML0314c. Protein elicited strong humoral immune response in leprosy patients, whereas, a reduced immune response was observed in the relapsed cases. No humoral response was observed in treatment completed patients. Overexpression of ml0314c in the surrogate host M. smegmatis showed marked difference in the colony morphology and growth rate. In conclusion, ML0314c is a secretary carboxyl esterase that could modulate the immune response in leprosy patients.


Assuntos
Lipólise/genética , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Domínio Catalítico/genética , Clonagem Molecular/métodos , Escherichia coli/genética , Humanos , Concentração de Íons de Hidrogênio , Hanseníase/metabolismo , Hanseníase/microbiologia , Lipase/genética , Metabolismo dos Lipídeos/genética , Lipídeos , Mutagênese Sítio-Dirigida/métodos , Mycobacterium tuberculosis/genética , Especificidade por Substrato/genética , Fatores de Virulência
8.
Future Microbiol ; 12: 315-335, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28287297

RESUMO

Mycobacterium leprae must adopt a metabolic strategy and undergo various metabolic alterations upon infection to survive inside the human body for years in a dormant state. A change in lipid homeostasis upon infection is highly pronounced in Mycobacterium leprae. Lipids play an essential role in the survival and pathogenesis of mycobacteria. Lipids are present in several forms and serve multiple roles from being a source of nutrition, providing rigidity, evading the host immune response to serving as virulence factors, etc. The synthesis and degradation of lipids is a highly regulated process and is the key to future drug designing and diagnosis for mycobacteria. In the current review, an account of the distinct roles served by lipids, the mechanism of their synthesis and degradation has been elucidated.


Assuntos
Hanseníase/microbiologia , Metabolismo dos Lipídeos , Mycobacterium leprae/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Hanseníase/metabolismo , Mycobacterium leprae/genética , Mycobacterium leprae/crescimento & desenvolvimento , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
9.
Nat Immunol ; 17(9): 1046-56, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27478939

RESUMO

Single-nucleotide variations in C13orf31 (LACC1) that encode p.C284R and p.I254V in a protein of unknown function (called 'FAMIN' here) are associated with increased risk for systemic juvenile idiopathic arthritis, leprosy and Crohn's disease. Here we set out to identify the biological mechanism affected by these coding variations. FAMIN formed a complex with fatty acid synthase (FASN) on peroxisomes and promoted flux through de novo lipogenesis to concomitantly drive high levels of fatty-acid oxidation (FAO) and glycolysis and, consequently, ATP regeneration. FAMIN-dependent FAO controlled inflammasome activation, mitochondrial and NADPH-oxidase-dependent production of reactive oxygen species (ROS), and the bactericidal activity of macrophages. As p.I254V and p.C284R resulted in diminished function and loss of function, respectively, FAMIN determined resilience to endotoxin shock. Thus, we have identified a central regulator of the metabolic function and bioenergetic state of macrophages that is under evolutionary selection and determines the risk of inflammatory and infectious disease.


Assuntos
Artrite Juvenil/genética , Doença de Crohn/genética , Infecções/genética , Hanseníase/genética , Macrófagos/imunologia , Proteínas/genética , Choque Séptico/genética , Trifosfato de Adenosina/metabolismo , Animais , Bacteriólise , Células Cultivadas , Metabolismo Energético , Ácido Graxo Sintase Tipo I/metabolismo , Predisposição Genética para Doença , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/metabolismo , Oxirredução , Polimorfismo de Nucleotídeo Único , Risco
10.
Biochim Biophys Acta ; 1861(1): 60-67, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26515252

RESUMO

Diseases including tuberculosis and leprosy are caused by species of the Mycobacterium genus and are a huge burden on global health, aggravated by the emergence of drug resistant strains. Mycobacteria have a high lipid content and complex lipid profile including several unique classes of lipid. Recent years have seen a growth in research focused on lipid structures, metabolism and biological functions driven by advances in mass spectrometry techniques and instrumentation, particularly the use of electrospray ionization. Here we review the contributions of lipidomics towards the advancement of our knowledge of lipid metabolism in mycobacterial species.


Assuntos
Metabolismo dos Lipídeos , Mycobacterium/metabolismo , Biologia Computacional , Glicolipídeos/metabolismo , Lipídeos/biossíntese , Espectrometria de Massas , Ácidos Micólicos/metabolismo , Triglicerídeos/metabolismo
11.
Antioxid Redox Signal ; 22(18): 1646-66, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-25694038

RESUMO

SIGNIFICANCE: Oxidized phospholipids are now well recognized as markers of biological oxidative stress and bioactive molecules with both pro-inflammatory and anti-inflammatory effects. While analytical methods continue to be developed for studies of generic lipid oxidation, mass spectrometry (MS) has underpinned the advances in knowledge of specific oxidized phospholipids by allowing their identification and characterization, and it is responsible for the expansion of oxidative lipidomics. RECENT ADVANCES: Studies of oxidized phospholipids in biological samples, from both animal models and clinical samples, have been facilitated by the recent improvements in MS, especially targeted routines that depend on the fragmentation pattern of the parent molecular ion and improved resolution and mass accuracy. MS can be used to identify selectively individual compounds or groups of compounds with common features, which greatly improves the sensitivity and specificity of detection. Application of these methods has enabled important advances in understanding the mechanisms of inflammatory diseases such as atherosclerosis, steatohepatitis, leprosy, and cystic fibrosis, and it offers potential for developing biomarkers of molecular aspects of the diseases. CRITICAL ISSUES AND FUTURE DIRECTIONS: The future in this field will depend on development of improved MS technologies, such as ion mobility, novel enrichment methods and databases, and software for data analysis, owing to the very large amount of data generated in these experiments. Imaging of oxidized phospholipids in tissue MS is an additional exciting direction emerging that can be expected to advance understanding of physiology and disease.


Assuntos
Metabolismo dos Lipídeos , Fosfolipídeos/metabolismo , Animais , Biomarcadores/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Espectrometria de Massas , Oxirredução , Estresse Oxidativo , Fosfolipídeos/química
12.
PLoS One ; 8(6): e64748, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23798993

RESUMO

Herein, we performed microarray experiments in Schwann cells infected with live M. leprae and identified novel differentially expressed genes (DEG) in M. leprae infected cells. Also, we selected candidate genes associated or implicated with leprosy in genetic studies and biological experiments. Forty-seven genes were selected for validation in two independent types of samples by multiplex qPCR. First, an in vitro model using THP-1 cells was infected with live Mycobacterium leprae and M. bovis bacillus Calmette-Guérin (BCG). In a second situation, mRNA obtained from nerve biopsies from patients with leprosy or other peripheral neuropathies was tested. We detected DEGs that discriminate M. bovis BCG from M. leprae infection. Specific signatures of susceptible responses after M. leprae infection when compared to BCG lead to repression of genes, including CCL2, CCL3, IL8 and SOD2. The same 47-gene set was screened in nerve biopsies, which corroborated the down-regulation of CCL2 and CCL3 in leprosy, but also evidenced the down-regulation of genes involved in mitochondrial metabolism, and the up-regulation of genes involved in lipid metabolism and ubiquitination. Finally, a gene expression signature from DEG was identified in patients confirmed of having leprosy. A classification tree was able to ascertain 80% of the cases as leprosy or non-leprous peripheral neuropathy based on the expression of only LDLR and CCL4. A general immune and mitochondrial hypo-responsive state occurs in response to M. leprae infection. Also, the most important genes and pathways have been highlighted providing new tools for early diagnosis and treatment of leprosy.


Assuntos
Quimiocinas/metabolismo , Hanseníase/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Transcriptoma , Células Cultivadas , Quimiocinas/genética , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno , Humanos , Hanseníase/imunologia , Hanseníase/microbiologia , Masculino , Mitocôndrias/microbiologia , Mycobacterium bovis/imunologia , Mycobacterium leprae/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Nervos Periféricos/metabolismo , Células de Schwann/imunologia , Células de Schwann/metabolismo , Células de Schwann/microbiologia
13.
s.l; s.n; 2013. 11 p. ilus, graf.
Não convencional em Inglês | SES-SP, HANSEN, HANSENIASE, SESSP-ILSLPROD, SES-SP, SESSP-ILSLACERVO, SES-SP | ID: biblio-1095732

RESUMO

Herein, we performed microarray experiments in Schwann cells infected with live M. leprae and identified novel differentially expressed genes (DEG) in M. leprae infected cells. Also, we selected candidate genes associated or implicated with leprosy in genetic studies and biological experiments. Forty-seven genes were selected for validation in two independent types of samples by multiplex qPCR. First, an in vitro model using THP-1 cells was infected with live Mycobacterium leprae and M. bovis bacillus Calmette-Guérin (BCG). In a second situation, mRNA obtained from nerve biopsies from patients with leprosy or other peripheral neuropathies was tested. We detected DEGs that discriminate M. bovis BCG from M. leprae infection. Specific signatures of susceptible responses after M. leprae infection when compared to BCG lead to repression of genes, including CCL2, CCL3, IL8 and SOD2. The same 47-gene set was screened in nerve biopsies, which corroborated the down-regulation of CCL2 and CCL3 in leprosy, but also evidenced the down-regulation of genes involved in mitochondrial metabolism, and the up-regulation of genes involved in lipid metabolism and ubiquitination. Finally, a gene expression signature from DEG was identified in patients confirmed of having leprosy. A classification tree was able to ascertain 80% of the cases as leprosy or non-leprous peripheral neuropathy based on the expression of only LDLR and CCL4. A general immune and mitochondrial hypo-responsive state occurs in response to M. leprae infection. Also, the most important genes and pathways have been highlighted providing new tools for early diagnosis and treatment of leprosy.


Assuntos
Masculino , Feminino , Células Cultivadas , Regulação da Expressão Gênica/imunologia , Quimiocinas/metabolismo , Perfilação da Expressão Gênica , Hanseníase/imunologia , Hanseníase/metabolismo , Hanseníase/microbiologia , Mitocôndrias/metabolismo , Mitocôndrias/microbiologia , Mycobacterium bovis/imunologia , Mycobacterium leprae/imunologia , Nervos Periféricos/metabolismo , Células de Schwann/imunologia , Células de Schwann/metabolismo , Análise por Conglomerados , Quimiocinas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Metabolismo dos Lipídeos , Interações Hospedeiro-Patógeno , Transcriptoma
14.
PLoS Negl Trop Dis ; 6(12): e1936, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236531

RESUMO

Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-ß and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine.


Assuntos
Clofazimina/farmacologia , Hansenostáticos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Mycobacterium leprae/efeitos dos fármacos , Animais , Western Blotting , Dapsona/farmacologia , Perfilação da Expressão Gênica , Humanos , Interferons/biossíntese , Ratos , Ratos Nus , Reação em Cadeia da Polimerase em Tempo Real , Rifampina/farmacologia
15.
Microb Pathog ; 52(5): 285-91, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22553833

RESUMO

Mycobacterium leprae (M. leprae), the causative agent of leprosy, parasitizes within the foamy or enlarged phagosome of macrophages where rich lipids accumulate. Although the mechanisms for lipid accumulation in the phagosome have been clarified, it is still unclear how such large amounts of lipids escape degradation. To further explore underlying mechanisms involved in lipid catabolism in M. leprae-infected host cells, we examined the expression of hormone-sensitive lipase (HSL), a key enzyme in fatty acid mobilization and lipolysis, in human macrophage THP-1 cells. We found that infection by live M. leprae significantly suppressed HSL expression levels. This suppression was not observed with dead M. leprae or latex beads. Macrophage activation by peptidoglycan (PGN), the ligand for toll-like receptor 2 (TLR2), increased HSL expression; however, live M. leprae suppressed this increase. HSL expression was abolished in the slit-skin smear specimens from patients with lepromatous and borderline leprosy. In addition, the recovery of HSL expression was observed in patients who experienced a lepra reaction, which is a cell-mediated, delayed-type hypersensitivity immune response, or in patients who were successfully treated with multi-drug therapy. These results suggest that M. leprae suppresses lipid degradation through inhibition of HSL expression, and that the monitoring of HSL mRNA levels in slit-skin smear specimens may be a useful indicator of patient prognosis.


Assuntos
Hanseníase/enzimologia , Metabolismo dos Lipídeos , Macrófagos/enzimologia , Macrófagos/metabolismo , Mycobacterium leprae/fisiologia , Esterol Esterase/metabolismo , Regulação para Baixo , Humanos , Hanseníase/genética , Hanseníase/metabolismo , Hanseníase/microbiologia , Macrófagos/microbiologia , Fagossomos/metabolismo , Esterol Esterase/genética , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
16.
Chem Biol Drug Des ; 79(6): 1056-62, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22405030

RESUMO

Tuberculosis is the second leading infectious killer with 9 million new cases in 2009. Extensive use of pathogen's lipid metabolism especially in utilizing the host lipids and virulence highlights the importance of exported lipid-catabolizing enzymes. Current study aims to emphasize the importance of Rv0183, an exported monoacylglycerol lipase, involved in metabolizing the host cell membrane lipids. Sequence analysis and homology modeling shows Rv0183 is highly conserved throughout mycobacterial species even in Mycobacterium leprae and also significantly divergent from mammalian lipases. Additionally, employing virtual screening using NCI diversity set and ZINC database with criteria of molecules with higher predicted free energy of binding toward Rv0183 than human lipase, potential inhibitors have been identified for Rv0183. A tautomer of ZINC13451138, known inhibitor for HIV-1 integrase is the best hit with difference in free energy of binding of 8.72 kcal/mol. The sequence and structure analysis were helpful in identifying the ligand binding sites and molecular function of the mycobacterial specific monoacylglycerol lipase. Rv0183 represents a suitable and promising drug target and is also a step towards understanding dormancy development and reactivation, thereby addressing pathogen's drug resistance. Experimental studies on the discovered potential inhibitors in this virtual screen should further validate the therapeutic utility of Rv0183.


Assuntos
Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , Ácidos Carboxílicos/farmacologia , Cicloexanos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Fenóis/farmacologia , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Ácidos Carboxílicos/química , Cicloexanos/química , Bases de Dados Factuais , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Fenóis/química , Ligação Proteica , Estrutura Terciária de Proteína , Termodinâmica
17.
J Immunol ; 187(5): 2548-58, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21813774

RESUMO

The mechanisms responsible for nerve injury in leprosy need further elucidation. We recently demonstrated that the foamy phenotype of Mycobacterium leprae-infected Schwann cells (SCs) observed in nerves of multibacillary patients results from the capacity of M. leprae to induce and recruit lipid droplets (LDs; also known as lipid bodies) to bacterial-containing phagosomes. In this study, we analyzed the parameters that govern LD biogenesis by M. leprae in SCs and how this contributes to the innate immune response elicited by M. leprae. Our observations indicated that LD formation requires the uptake of live bacteria and depends on host cell cytoskeleton rearrangement and vesicular trafficking. TLR6 deletion, but not TLR2, completely abolished the induction of LDs by M. leprae, as well as inhibited the bacterial uptake in SCs. M. leprae-induced LD biogenesis correlated with increased PGE(2) and IL-10 secretion, as well as reduced IL-12 and NO production in M. leprae-infected SCs. Analysis of nerves from lepromatous leprosy patients showed colocalization of M. leprae, LDs, and cyclooxygenase-2 in SCs, indicating that LDs are sites for PGE(2) synthesis in vivo. LD biogenesis Inhibition by the fatty acid synthase inhibitor C-75 abolished the effect of M. leprae on SC production of immunoinflammatory mediators and enhanced the mycobacterial-killing ability of SCs. Altogether, our data indicated a critical role for TLR6-dependent signaling in M. leprae-SC interactions, favoring phagocytosis and subsequent signaling for induction of LD biogenesis in infected cells. Moreover, our observations reinforced the role of LDs favoring mycobacterial survival and persistence in the nerve. These findings give further support to a critical role for LDs in M. leprae pathogenesis in the nerve.


Assuntos
Hanseníase/patologia , Células de Schwann/microbiologia , Células de Schwann/patologia , Receptor 6 Toll-Like/imunologia , Animais , Humanos , Imuno-Histoquímica , Corpos de Inclusão/imunologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Hanseníase/imunologia , Metabolismo dos Lipídeos/fisiologia , Lipídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Mycobacterium leprae/imunologia , Células de Schwann/imunologia , Receptor 6 Toll-Like/metabolismo
18.
Cell Microbiol ; 13(2): 259-73, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20955239

RESUMO

The predilection of Mycobacterium leprae (ML) for Schwann cells (SCs) leads to peripheral neuropathy, a major concern in leprosy. Highly infected SCs in lepromatous leprosy nerves show a foamy, lipid-laden appearance; but the origin and nature of these lipids, as well as their role in leprosy, have remained unclear. The data presented show that ML has a pronounced effect on host-cell lipid homeostasis through regulation of lipid droplet (lipid bodies, LD) biogenesis and intracellular distribution. Electron microscopy and immunohistochemical analysis of lepromatous leprosy nerves for adipose differentiation-related protein expression, a classical LD marker, revealed accumulating LDs in close association to ML in infected SCs. The capacity of ML to induce LD formation was confirmed in in vitro studies with human SCs. Moreover, via confocal and live-cell analysis, it was found that LDs are promptly recruited to bacterial phagosomes and that this process depends on cytoskeletal reorganization and PI3K signalling. ML-induced LD biogenesis and recruitment were found to be independent of TLR2 bacterial sensing. Notably, LD recruitment impairment by cytoskeleton drugs decreased intracellular bacterial survival. Altogether, our data revealed SC lipid accumulation in ML-containing phagosomes, which may represent a fundamental aspect of bacterial pathogenesis in the nerve.


Assuntos
Metabolismo dos Lipídeos , Mycobacterium leprae/patogenicidade , Fagossomos/microbiologia , Células de Schwann/microbiologia , Células Cultivadas , Citoplasma/química , Citoplasma/ultraestrutura , Citoesqueleto/metabolismo , Humanos , Imuno-Histoquímica , Proteínas de Membrana/análise , Viabilidade Microbiana , Microscopia , Mycobacterium leprae/metabolismo , Perilipina-2 , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
20.
J Leukoc Biol ; 87(3): 371-84, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19952355

RESUMO

A hallmark of LL is the accumulation of Virchow's foamy macrophages. However, the origin and nature of these lipids, as well as their function and contribution to leprosy disease, remain unclear. We herein show that macrophages present in LL dermal lesions are highly positive for ADRP, suggesting that their foamy aspect is at least in part derived from LD (also known as lipid bodies) accumulation induced during ML infection. Indeed, the capacity of ML to induce LD formation was confirmed in vivo via an experimental model of mouse pleurisy and in in vitro studies with human peripheral monocytes and murine peritoneal macrophages. Furthermore, infected cells were shown to propagate LD induction to uninfected, neighboring cells by generating a paracrine signal, for which TLR2 and TLR6 were demonstrated to be essential. However, TLR2 and TLR6 deletions affected LD formation in bacterium-bearing cells only partially, suggesting the involvement of alternative receptors of the innate immune response besides TLR2/6 for ML recognition by macrophages. Finally, a direct correlation between LD formation and PGE(2) production was observed, indicating that ML-induced LDs constitute intracellular sites for eicosanoid synthesis and that foamy cells may be critical regulators in subverting the immune response in leprosy.


Assuntos
Eicosanoides/biossíntese , Hanseníase/metabolismo , Hanseníase/microbiologia , Metabolismo dos Lipídeos , Mycobacterium leprae/patogenicidade , Organelas/metabolismo , Receptores Toll-Like/metabolismo , Animais , Biópsia , Meios de Cultivo Condicionados/farmacologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Dinoprostona/biossíntese , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Leucócitos Mononucleares/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos , Mycobacterium leprae/efeitos dos fármacos , Organelas/microbiologia , Comunicação Parácrina/efeitos dos fármacos , Perilipina-2 , Fagocitose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Pele/microbiologia , Pele/patologia , Receptor 2 Toll-Like/metabolismo , Receptor 6 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA