Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros


Bases de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 1, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593497

RESUMO

Myeloid-derived suppressor cells (MDSCs), which are immature heterogeneous bone marrow cells, have been described as potent immune regulators in human and murine cancer models. The distribution of MDSCs varies across organs and is divided into three subpopulations: granulocytic MDSCs or polymorphonuclear MDSCs (G-MDSCs or PMN-MDSCs), monocytic MDSCs (M-MDSCs), as well as a recently identified early precursor MDSC (eMDSCs) in humans. Activated MDSCs induce the inactivation of NK cells, CD4+, and CD8+ T cells through a variety of mechanisms, thus promoting the formation of tumor immunosuppressive microenvironment. ER stress plays an important protecting role in the survival of MDSC, which aggravates the immunosuppression in tumors. In addition, ferroptosis can promote an anti-tumor immune response by reversing the immunosuppressive microenvironment. This review summarizes immune suppression by MDSCs with a focus on the role of endoplasmic reticulum stress-mediated immune suppression in cancer and infectious disease, in particular leprosy and tuberculosis.


Assuntos
Doenças Transmissíveis , Células Supressoras Mieloides , Neoplasias , Humanos , Animais , Camundongos , Terapia de Imunossupressão , Doenças Transmissíveis/patologia , Estresse do Retículo Endoplasmático , Microambiente Tumoral
2.
Int Immunopharmacol ; 114: 109463, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36462337

RESUMO

Targeting immunotherapeutics inside the tumor microenvironment (TME) with intact biological activity remains a pressing issue. Mycobacterium indicus pranii (MIP), an approved adjuvant therapy for leprosy has exhibited promising results in clinical trials of lung (NSCLC) and bladder cancer. Whole MIP as well as its cell wall fraction have shown tumor growth suppression and enhanced survival in mice model of melanoma, when administered peritumorally. Clinically, peritumoral delivery remains a procedural limitation. In this study, a tumor targeted delivery system was designed, where chitosan nanoparticles loaded with MIP adjuvants, when administered intravenously showed preferential accumulation within the TME, exploiting the principle of enhanced permeability and retention effect. Bio-distribution studies revealed their highest concentration inside the tumor after 6 h of administration. Interestingly, MIP adjuvant nano-formulations significantly reduced the tumor volume in the treated groups and increased the frequency of activated immune cells inside the TME. For chemoimmunotherapeutics studies, MIP nano-formulation was combined with standard dosage regimen of Paclitaxel. Combined therapy exhibited a further reduction in tumor volume relative to either of the MIP nano formulations. From this study a three-pronged strategy emerged as the underlying mechanism; chitosan and Paclitaxel have shown direct role in tumor cell death and the MIP nano-formulation activates the tumor residing immune cells which ultimately leads to the reduced tumor growth.


Assuntos
Quitosana , Nanopartículas , Animais , Camundongos , Microambiente Tumoral , Adjuvantes Imunológicos/uso terapêutico , Paclitaxel , Linhagem Celular Tumoral
3.
Biochim Biophys Acta Gen Subj ; 1866(9): 130183, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35661803

RESUMO

BACKGROUND: Bacterial nanocellulose (BNC) has been used as cell support in numerous tissue engineering studies. Its use can be explained based on the fact its structure allows the creation of a required microenvironment for an ideal material, which supports 3D cell culture. Its structure and interconnected pores lead to animal cells adhesion and proliferation, also allowing oxygen and nutrients transportation. METHODS: We developed a new methodology to produce spherical platforms synthesized by Komagataebacter hansenii (ATCC 23769) under dynamic culture conditions in minimal medium. The chemical composition and physical properties of the platforms were evaluated. Then, human melanoma cells (SK-MEL-28) were encapsulated into the platforms and evaluated by metabolic activity, morphology and their ability on adhering to the Hollow Translucid BNC Spheres (BNC-TS-H) and Compartmentalized Translucid BNC Spheres (BNC-TS-C) up to 3 days. RESULTS: BNC-TS-H and BNC-TS-C platforms were produced as translucid spheroid platforms with distinct microenvironment under dynamic fermentation. The chemical and physical characterizations confirmed the platforms composition as BNC. The produced internal microenvironments in spherical platforms are relevant to determine tumor cell fate. In the first 12 h of culture, cells could adhere to nanocellulose microfibers assuming their typical tumorous phenotype in 72 h of culture. CONCLUSION: The dynamic fermentation in minimal medium produced distinct microstructured platforms of BNC-TS-H and BNC-TS-C. The platforms microstructure resulted in microenvironments that enabled distinct cell-cell and cell-matrix interactions. This behavior suggests several applications in tissue engineering. GENERAL SIGNIFICANCE: The method produced translucid BNC sphere platforms with distinct microenvironments for 3D cell culture.


Assuntos
Celulose , Melanoma , Animais , Bactérias/metabolismo , Adesão Celular , Celulose/química , Engenharia Tecidual , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA