Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
mBio ; 12(2)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653882

RESUMO

Functional characterization of bacterial proteins lags far behind the identification of new protein families. This is especially true for bacterial species that are more difficult to grow and genetically manipulate than model systems such as Escherichia coli and Bacillus subtilis To facilitate functional characterization of mycobacterial proteins, we have established a Mycobacterial Systems Resource (MSR) using the model organism Mycobacterium smegmatis This resource focuses specifically on 1,153 highly conserved core genes that are common to many mycobacterial species, including Mycobacterium tuberculosis, in order to provide the most relevant information and resources for the mycobacterial research community. The MSR includes both biological and bioinformatic resources. The biological resource includes (i) an expression plasmid library of 1,116 genes fused to a fluorescent protein for determining protein localization; (ii) a library of 569 precise deletions of nonessential genes; and (iii) a set of 843 CRISPR-interference (CRISPRi) plasmids specifically targeted to silence expression of essential core genes and genes for which a precise deletion was not obtained. The bioinformatic resource includes information about individual genes and a detailed assessment of protein localization. We anticipate that integration of these initial functional analyses and the availability of the biological resource will facilitate studies of these core proteins in many Mycobacterium species, including the less experimentally tractable pathogens M. abscessus, M. avium, M. kansasii, M. leprae, M. marinum, M. tuberculosis, and M. ulceransIMPORTANCE Diseases caused by mycobacterial species result in millions of deaths per year globally, and present a substantial health and economic burden, especially in immunocompromised patients. Difficulties inherent in working with mycobacterial pathogens have hampered the development and application of high-throughput genetics that can inform genome annotations and subsequent functional assays. To facilitate mycobacterial research, we have created a biological and bioinformatic resource (https://msrdb.org/) using Mycobacterium smegmatis as a model organism. The resource focuses specifically on 1,153 proteins that are highly conserved across the mycobacterial genus and, therefore, likely perform conserved mycobacterial core functions. Thus, functional insights from the MSR will apply to all mycobacterial species. We believe that the availability of this mycobacterial systems resource will accelerate research throughout the mycobacterial research community.


Assuntos
Genes Bacterianos , Mycobacterium smegmatis/genética , Mycobacterium/genética , Pesquisa , Biologia Computacional , Biblioteca Gênica , Mycobacterium/classificação , Mycobacterium/patogenicidade , Mycobacterium smegmatis/crescimento & desenvolvimento
2.
Nucleic Acids Res ; 45(1): 1-14, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27899559

RESUMO

RNase H enzymes sense the presence of ribonucleotides in the genome and initiate their removal by incising the ribonucleotide-containing strand of an RNA:DNA hybrid. Mycobacterium smegmatis encodes four RNase H enzymes: RnhA, RnhB, RnhC and RnhD. Here, we interrogate the biochemical activity and nucleic acid substrate specificity of RnhA. We report that RnhA (like RnhC characterized previously) is an RNase H1-type magnesium-dependent endonuclease with stringent specificity for RNA:DNA hybrid duplexes. Whereas RnhA does not incise an embedded mono-ribonucleotide, it can efficiently cleave within tracts of four or more ribonucleotides in duplex DNA. We gained genetic insights to the division of labor among mycobacterial RNases H by deleting the rnhA, rnhB, rnhC and rnhD genes, individually and in various combinations. The salient conclusions are that: (i) RNase H1 activity is essential for mycobacterial growth and can be provided by either RnhC or RnhA; (ii) the RNase H2 enzymes RnhB and RnhD are dispensable for growth and (iii) RnhB and RnhA collaborate to protect M. smegmatis against oxidative damage in stationary phase. Our findings highlight RnhC, the sole RNase H1 in pathogenic mycobacteria, as a candidate drug discovery target for tuberculosis and leprosy.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Peróxido de Hidrogênio/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Ribonuclease H/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonuclease H/metabolismo , Ribonucleotídeos/genética , Ribonucleotídeos/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
3.
PLoS One ; 11(1): e0147188, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26794499

RESUMO

Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases as potential drug targets. These enzymes catalyse the condensation of a specific amino acid to its cognate tRNA in an energy-dependent reaction. Therefore, each organism is expected to encode at least twenty aminoacyl-tRNA synthetases, one for each amino acid. However, a bioinformatics search for genes encoding aminoacyl-tRNA synthetases from Mycobacterium smegmatis returned multiple genes for glutamyl (GluRS), cysteinyl (CysRS), prolyl (ProRS) and lysyl (LysRS) tRNA synthetases. The pathogenic mycobacteria, namely, Mycobacterium tuberculosis and Mycobacterium leprae, were also found to possess two genes each for CysRS and LysRS. A similar search indicated the presence of additional genes for LysRS in gram negative bacteria as well. Herein, we describe sequence and structural analysis of the additional aminoacyl-tRNA synthetase genes found in M. smegmatis. Characterization of conditional expression strains of Cysteinyl and Lysyl-tRNA synthetases generated in M. smegmatis revealed that the canonical aminoacyl-tRNA synthetase are essential, while the additional ones are not essential for the growth of M. smegmatis.


Assuntos
Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/metabolismo , Mutação/genética , Mycobacterium smegmatis/enzimologia , Aminoacil-tRNA Sintetases/genética , Humanos , Lisina-tRNA Ligase/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , RNA de Transferência/metabolismo
4.
PLoS One ; 7(2): e31788, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363734

RESUMO

BACKGROUND: Bacteria of the suborder Corynebacterineae include significant human pathogens such as Mycobacterium tuberculosis and M. leprae. Drug resistance in mycobacteria is increasingly common making identification of new antimicrobials a priority. Mycobacteria replicate intracellularly, most commonly within the phagosomes of macrophages, and bacterial proteins essential for intracellular survival and persistence are particularly attractive targets for intervention with new generations of anti-mycobacterial drugs. METHODOLOGY/PRINCIPAL FINDINGS: We have identified a novel gene that, when inactivated, leads to accelerated death of M. smegmatis within a macrophage cell line in the first eight hours following infection. Complementation of the mutant with an intact copy of the gene restored survival to near wild type levels. Gene disruption did not affect growth compared to wild type M. smegmatis in axenic culture or in the presence of low pH or reactive oxygen intermediates, suggesting the growth defect is not related to increased susceptibility to these stresses. The disrupted gene, MSMEG_5817, is conserved in all mycobacteria for which genome sequence information is available, and designated Rv0807 in M. tuberculosis. Although homology searches suggest that MSMEG_5817 is similar to the serine:pyruvate aminotransferase of Brevibacterium linens suggesting a possible role in glyoxylate metabolism, enzymatic assays comparing activity in wild type and mutant strains demonstrated no differences in the capacity to metabolize glyoxylate. CONCLUSIONS/SIGNIFICANCE: MSMEG_5817 is a previously uncharacterized gene that facilitates intracellular survival of mycobacteria. Interference with the function of MSMEG_5817 may provide a novel therapeutic approach for control of mycobacterial pathogens by assisting the host immune system in clearance of persistent intracellular bacteria.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos/genética , Macrófagos/microbiologia , Viabilidade Microbiana/genética , Mycobacterium smegmatis/citologia , Mycobacterium smegmatis/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Linhagem Celular , Elementos de DNA Transponíveis/genética , DNA Intergênico/genética , Regulação Bacteriana da Expressão Gênica , Rearranjo Gênico/genética , Marcação de Genes , Teste de Complementação Genética , Humanos , Espaço Intracelular/microbiologia , Macrófagos/citologia , Camundongos , Dados de Sequência Molecular , Mutagênese Insercional/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium smegmatis/crescimento & desenvolvimento , NF-kappa B/metabolismo , Fagocitose , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Estresse Fisiológico/genética
5.
PLoS One ; 6(2): e16869, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21346818

RESUMO

BACKGROUND: The unique cell wall of bacteria of the suborder Corynebacterineae is essential for the growth and survival of significant human pathogens including Mycobacterium tuberculosis and Mycobacterium leprae. Drug resistance in mycobacteria is an increasingly common development, making identification of new antimicrobials a priority. Recent studies have revealed potent anti-mycobacterial compounds, the benzothiazinones and dinitrobenzamides, active against DprE1, a subunit of decaprenylphosphoribose 2' epimerase which forms decaprenylphosphoryl arabinose, the arabinose donor for mycobacterial cell wall biosynthesis. Despite the exploitation of Mycobacterium smegmatis in the identification of DprE1 as the target of these new antimicrobials and its use in the exploration of mechanisms of resistance, the essentiality of DprE1 in this species has never been examined. Indeed, direct experimental evidence of the essentiality of DprE1 has not been obtained in any species of mycobacterium. METHODOLOGY/PRINCIPAL FINDINGS: In this study we constructed a conditional gene knockout strain targeting the ortholog of dprE1 in M. smegmatis, MSMEG_6382. Disruption of the chromosomal copy of MSMEG_6382 was only possible in the presence of a plasmid-encoded copy of MSMEG_6382. Curing of this "rescue" plasmid from the bacterial population resulted in a cessation of growth, demonstrating gene essentiality. CONCLUSIONS/SIGNIFICANCE: This study provides the first direct experimental evidence for the essentiality of DprE1 in mycobacteria. The essentiality of DprE1 in M. smegmatis, combined with its conservation in all sequenced mycobacterial genomes, suggests that decaprenylphosphoryl arabinose synthesis is essential in all mycobacteria. Our findings indicate a lack of redundancy in decaprenylphosphoryl arabinose synthesis in M. smegmatis, despite the relatively large coding capacity of this species, and suggest that no alternative arabinose donors for cell wall biosynthesis exist. Overall, this study further validates DprE1 as a promising target for new anti-mycobacterial drugs.


Assuntos
Antifúngicos/metabolismo , Benzamidas/metabolismo , Mycobacterium smegmatis/enzimologia , Racemases e Epimerases/metabolismo , Tiazinas/metabolismo , Sequência de Aminoácidos , Antifúngicos/farmacologia , Benzamidas/farmacologia , Biocatálise , Parede Celular/enzimologia , Parede Celular/metabolismo , Descoberta de Drogas , Técnicas de Inativação de Genes , Dados de Sequência Molecular , Mycobacterium smegmatis/citologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/crescimento & desenvolvimento , Ligação Proteica , Racemases e Epimerases/química , Racemases e Epimerases/deficiência , Racemases e Epimerases/genética , Homologia de Sequência de Aminoácidos , Tiazinas/farmacologia
6.
Microbiology (Reading) ; 147(Pt 2): 473-481, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11158364

RESUMO

In this study it was demonstrated that a range of transposon mutants of Mycobacterium smegmatis, previously described as having impaired survival in carbon-starved stationary phase, were not markedly affected in O(2)-starved stationary-phase survival. One exception was 329B, a purine auxotroph, which showed a precipitous reduction in viability from approximately 10(8) to approximately 10(3) c.f.u. ml(-1) during the first 5-10 d in O(2)-starved stationary phase. This was followed by an equally rapid recovery in culturability to a level within 10-100-fold of wild-type levels by 10-20 d into stationary phase. Transduction of the mutation into a clean genetic background demonstrated that the phenotype was due to the transposon insertion, which was shown to be in the purF gene. purF encodes phosphoribosylpyrophosphate amidotransferase, which catalyses the first committed step in purine biosynthesis. The M. smegmatis purF gene, which encodes a protein with a very high degree of similarity to the PurF homologues of Mycobacterium tuberculosis and Mycobacterium leprae, was cloned and shown to substantially complement the O(2)-starvation phenotype. The recovery in culturabilty of the purF mutant in O(2)-starved stationary phase did not involve movement of the transposon. In addition, when cells that had recovered culturability were retested, their survival kinetics in stationary phase were identical to the original culture, indicating that their recovery was not explained by the accumulation of suppressor mutations. It is concluded that the survival curve in O(2)-starved stationary phase for the purF mutant represents its true phenotype and is not a result of subsequent genetic changes in the culture. It is argued that the purF cells lose culturability for a finite period of time in stationary phase. Whether this is due to a fraction of the population dying and then regrowing using a previously undiscovered fermentation pathway, or becoming transiently dormant, or entering an active nonculturable state and subsequently undergoing resuscitation cannot be distinguished at this stage.


Assuntos
Mycobacterium smegmatis/crescimento & desenvolvimento , Oxigênio/metabolismo , Transaminases/genética , Sequência de Aminoácidos , Clonagem Molecular , Meios de Cultura , Deleção de Genes , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Mycobacterium smegmatis/genética , Fenótipo , Purinas/biossíntese , Análise de Sequência de DNA , Transaminases/metabolismo , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA