Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Food Microbiol ; 415: 110631, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38402671

RESUMO

Hanseniaspora vineae exhibits extraordinary positive oenological characteristics contributing to the aroma and texture of wines, especially by its ability to produce great concentrations of benzenoid and phenylpropanoid compounds compared with conventional Saccharomyces yeasts. Consequently, in practice, sequential inoculation of H. vineae and Saccharomyces cerevisiae allows to improve the aromatic quality of wines. In this work, we evaluated the impact on wine aroma produced by increasing the concentration of phenylalanine, the main amino acid precursor of phenylpropanoids and benzenoids. Fermentations were carried out using a Chardonnay grape juice containing 150 mg N/L yeast assimilable nitrogen. Fermentations were performed adding 60 mg/L of phenylalanine without any supplementary addition to the juice. Musts were inoculated sequentially using three different H. vineae strains isolated from Uruguayan vineyards and, after 96 h, S. cerevisiae was inoculated to complete the process. At the end of the fermentation, wine aromas were analysed by both gas chromatography-mass spectrometry and sensory evaluation through a panel of experts. Aromas derived from aromatic amino acids were differentially produced depending on the treatments. Sensory analysis revealed more floral character and greater aromatic complexity when compared with control fermentations without phenylalanine added. Moreover, fermentations performed in synthetic must with pure H. vineae revealed that even tyrosine can be used in absence of phenylalanine, and phenylalanine is not used by this yeast for the synthesis of tyrosine derivatives.


Assuntos
Hanseniaspora , Vinho , Vinho/análise , Fermentação , Saccharomyces cerevisiae/metabolismo , Odorantes/análise , Fenilalanina/análise , Fenilalanina/metabolismo , Hanseniaspora/metabolismo , Tirosina/análise , Tirosina/metabolismo
2.
Food Res Int ; 167: 112719, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087217

RESUMO

The aroma profile of industrial Sichuan paocai is formed and regulated by complex physiological and biochemical reactions and microbial metabolism, but little is known so far. In this study, we comprehensively analyzed the changes of metabolic profile and gene expression profile, mainly explored the formation pathways of two skeleton aroma-active compounds, 4-ethylphenol and 4-ethylguaiacol, and verified the pathways at multiple levels. The results showed that a total of 136 volatile metabolites and 560 non-volatile metabolites were identified in the whole fermentation process. The types and concentrations of metabolites in paocai were higher than those in brine, and gradually converged with fermentation. Differential analysis of metabolism and transcription levels were both enriched in three pathways: amino acid metabolism, phenylpropanoid metabolism and lipid metabolism. Among them, 4-ethylphenol and 4-ethylguaiacol, the products of the phenylpropanoid metabolism, were converted from p-coumaric acid and ferulic acid in plant cell walls, respectively. Under the action of decarboxylase produced by yeast (such as Debaryomyces Hansenii) and lactic acid bacteria (such as Lactobacillus versmoldensis), intermediate metabolites vinylphenols were produced, and the intermediate metabolites further produce the final products under the action of vinylphenol reductase. The key gene copy number, enzyme activity, and metabolite concentration in the pathways were detected to provide stronger evidence for the formation pathways. This study provided meaningful new insights for the development of aroma-producing enzymes and further guidance for the flavor improvement of industrial paocai.


Assuntos
Raphanus , Fermentação , Odorantes , Metaboloma , Saccharomyces cerevisiae
3.
J Sci Food Agric ; 103(8): 4107-4118, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36533884

RESUMO

BACKGROUND: There are sufficient scienctific studies that support the benefit that fermented dairy products produce in those who consume them. Traditionally, cow's milk has been the most commonly used milk but there is a growing interest in the development of new dairy products, substituting cow's milk with milk from other sources, as well as in the use of microorganisms in fermentation to replace artificial preservatives or treatments that may affect the chemical and organoleptic characteristics of the product. For these reasons, the aim of the present work was to understand the behavior of five potential probiotic yeasts during the fermentation of ewe's milk and to consider their potential use as biocontrol agents. RESULTS: Saccharomyces cerevisiae 3 and Hanseniaspora osmophila 1056 provided the most promising kinetic parameters in the different salt, temperature and pH conditions tested in their technological characterization. The profiles of organic acids and volatile compounds after the fermentation period was noteworthy for contributing to the final aroma of the dairy product. Sensory analysis revealed the sour taste of all samples, and S. cerevisiae 3, Lachancea thermotolerans 1039, and H. osmophila 1056 stood out for an accentuated cheese flavor. In addition, all strains showed biocontrol activity; they reduced the mycelium of the mycotoxigenic molds. CONCLUSION: Saccharomyces cerevisiae 3 and H. osmophila 1056 could be inoculated along with bacterial starters to provide a functional fermented beverage with improved flavor. These strains also have an added value as they act as biocontrol agents. © 2022 Society of Chemical Industry.


Assuntos
Produtos Fermentados do Leite , Probióticos , Animais , Ovinos , Bovinos , Feminino , Leite/química , Saccharomyces cerevisiae , Fermentação , Leveduras , Odorantes/análise , Produtos Fermentados do Leite/análise , Probióticos/análise
4.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432199

RESUMO

Hanseniaspora uvarum, a non-Saccharomyces cerevisiae species, has a crucial effect on the aroma characteristics of fruit wines, thus, attracting significant research interest in recent years. In this study, H. uvarum-Saccharomyces cerevisiae mixed fermentation was used to ferment Rosa roxburghii Tratt, blueberry fruit wine, and plum fruit wines using either a co-inoculated or a sequentially inoculated approach. The three fruit wines' volatile aroma characteristics were analyzed by headspace-solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results showed that the mixed inoculation of H. uvarum and S. cerevisiae reduced the alcoholic content of Kongxinli fruit wine. Moreover, H. uvarum-S. cerevisiae fermented Rosa roxburghii Tratt, blueberry, and plum fruit wines and further enriched their flavor compounds. The overall flavor characteristics of sequentially inoculated fruit wines differed significantly from those fermented with S. cerevisiae alone, although several similarities were also observed. Sequential inoculation of H. uvarum and S. cerevisiae positively affected the mellowness of the wine and achieved a better harmony of the overall wine flavors. Therefore, H. uvarum-Saccharomyces cerevisiae mixed fermentation can improve the complexity of the wines' aromatic composition and empower them with a unique identity. In particular, H. uvarum-Saccharomyces cerevisiae blueberry wine produced by mixed fermentation had the widest variety and content of aroma compounds among the fermented wines. Therefore, H. uvarum-Saccharomyces cerevisiae mixed-fermentation inoculation in the three fermented fruit wines significantly increased the aroma compound variety and content, thus, enriching their aroma richness and complexity. This study is the first comparative evaluation of the aroma characteristics of different fruit wines fermented with a mixed inoculation of H. uvarum and S. cerevisiae and provides a preliminary guide for these fruit wines produced with non-Saccharomyces yeast.


Assuntos
Mirtilos Azuis (Planta) , Prunus domestica , Rosa , Vinho , Vinho/análise , Fermentação , Saccharomyces cerevisiae , Odorantes/análise
5.
Food Res Int ; 161: 111891, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192917

RESUMO

The use of non-Saccharomyces yeast in the winemaking industry and even more their co-inoculations to maximize their growth and to express phenotypic characteristic is gaining more and more relevance. This study aimed to shed light on the biocompatibilities between Lachancea thermotolerans and Hanseniaspora spp., using different types of nutrients and considering the effect on Yeast Assimilable Nitrogen (YAN), at low temperature (16 °C) and medium SO2 (50 mg/L), in white must. L. thermotolerans has been used for its positive effect on pH reduction and Hanseniaspora spp. for improving the sensory profile. The behaviour of these yeasts was evaluated in co-inoculation, always finishing the fermentation with the sequential inoculation of S. cerevisiae. Significant results were obtained on the population count (CFU/mL) in CHROMagar™, with higher populations of Hanseniaspora spp. with respect to L. thermotolerans. Fermentations with L. thermotolerans/H. vineae, showed inhibition of acidification, generating up to 0.41 g/L of lactic acid. On the contrary, a synergistic effect when L. thermotolerans/H. opuntiae was used, achieved 2.44 g/L of lactic acid and a pH reduction of up to 0.16 and always more significant with Nutrient Vit BlancTM. At the same time ethanol concentration decreased by 3.4 % and volatile acidity never exceeded 0.5 g/L. Aromatic composition was analysed and it was found that all fermentations retained more aromatic esters and that on day 7 the amount of 2-phenylethyl acetate was at least 3 times higher in all fermentations compared to the control (Sc + Nutrient Vit BlancTM) which had 5.96 mg/L. Less yellow intensity (-17.3 %) typical of oxidation were observed in all fermentations in which Nutrient Vit BlancTM had been used and in the sensory analysis the co-inoculations with H. vineae generated better scores.


Assuntos
Hanseniaspora , Vinho , Etanol/análise , Concentração de Íons de Hidrogênio , Ácido Láctico/análise , Nitrogênio/análise , Nutrientes/análise , Odorantes/análise , Saccharomyces cerevisiae , Saccharomycetales , Vinho/análise
6.
Food Microbiol ; 105: 104011, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35473972

RESUMO

Fermented soybean products are gaining attention in the food industry owing to their nutritive value and health benefits. In this study, we performed genomic analysis and physiological characterization of two Debaryomyces spp. yeast isolates obtained from a Korean traditional fermented soy sauce "ganjang". Both Debaryomyces hansenii ganjang isolates KD2 and C11 showed halotolerance to concentrations of up to 15% NaCl and improved growth in the presence of salt. Ploidy and whole-genome sequencing analyses indicated that the KD2 genome is haploid, whereas the C11 genome is heterozygous diploid with two distinctive subgenomes. Interestingly, phylogenetic analysis using intron sequences indicated that the C11 strain was generated via hybridization between D. hansenii and D. tyrocola ancestor strains. The D. hansenii KD2 and D. hansenii-hybrid C11 produced various volatile flavor compounds associated with butter, caramel, cheese, and fruits, and showed high bioconversion activity from ferulic acid to 4-vinylguaiacol, a characteristic flavor compound of soybean products. Both KD2 and C11 exhibited viability in the presence of bile salts and at low pH and showed immunomodulatory activity to induce high levels of the anti-inflammatory cytokine IL-10. The safety of the yeast isolates was confirmed by analyzing virulence and acute oral toxicity. Together, the D. hansenii ganjang isolates possess physiological properties beneficial for improving the flavor and nutritional value of fermented products.


Assuntos
Queijo , Debaryomyces , Fabaceae , Probióticos , Saccharomycetales , Debaryomyces/genética , Genômica , Odorantes , Filogenia , República da Coreia , Saccharomyces cerevisiae , Saccharomycetales/genética , Glycine max
7.
J Food Sci ; 87(3): 886-894, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35142373

RESUMO

ß-Glucosidase is a key enzyme that hydrolyzes nonvolatile glycosylated precursors of aroma compounds and enhances the organoleptic quality of wines. In this study, a novel ß-glucosidase from Hanseniaspora uvarum Yun268 was localized, purified, and characterized. Results indicated that ß-glucosidase activity was mainly distributed within the cells. After purification via ammonium sulfate precipitation combined with chromatography, ß-glucosidase specific activity increased 8.36 times, and the activity recovery was 56.90%. The enzyme had a molecular mass of 74.22 kDa. It has a Michaelis constant (Km ) of 0.65 mmol/L, and a maximum velocity (Vmax ) of 5.1 nmol/min under optimum conditions; and Km of 0.94 mmol/L, and Vmax of 2.8 nmol/min under typical winemaking conditions. It exhibited the highest activity at 50°C and pH 5.0 and was stable at a temperature range of 20-80°C and pH range of 3.0-8.0. The enzyme has good tolerance to Fe3+ , especially maintaining 93.68% of its activity with 10 mmol/L of Fe3+ . Ethanol (<20%) and glucose (<150 g/L) inhibited its activity only slightly. Therefore, ß-glucosidase from H. uvarum Yun268 has excellent biochemical properties and a good application potential in winemaking. PRACTICAL APPLICATION: Winemaking is a biotechnological process in which exogenous ß-glucosidase is used to overcome the deficiency of endogenous ß-glucosidase activity in grapes. By localizing, purifying, and characterizing of ß-glucosidase from Hanseniaspora uvarum Yun268, it is expected to reveal its physical and chemical characteristics to evaluate its oenological properties in winemaking. The results may provide the basis for promoting the release of varietal aroma and improving wine sensory quality in the wine industry.


Assuntos
Hanseniaspora , Vinho , Fermentação , Odorantes/análise , Vinho/análise , beta-Glucosidase/metabolismo
8.
J Appl Microbiol ; 133(1): 200-211, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35050543

RESUMO

INTRODUCTION: Debaryomyces hansenii is a yeast widely used in meat fermentations as starter for the purpose of improving the aromatic quality of the final product. However, it has not been the subject of an extensive study regarding phenotypic characteristics important for starter selection, such as the capacity to grow at abiotic stress conditions occurring during fermentation, the ability to generate desirable aromas and the absence of virulence traits in yeasts. AIMS: The aim of this study was to screen 60 strains of D. hansenii isolated from assorted foods for their potential application as starters in dry-cured fermented sausages manufacture. METHODS: The abiotic stress factors tested were low aw and pH and high concentration of salt, acetic acid and lactic acid. The phenotypic virulence traits explored were growth at 37°C, pseudohyphal and biofilm generation, invasiveness and enzymatic activities present in virulent yeasts. The generation of desirable meat aromas was tested in models containing aroma precursors applying an olfactory analysis. A quantitative profiling of stress tolerance was used to test the potential performance of selected strains in meat fermentations. RESULTS: The results demonstrated that most strains displayed no virulence trait or were only positive for biofilm production. Moreover, the strains showed large heterogeneity regarding their tolerance to abiotic stress factors, although most of them could grow at intermediate to high levels of the traits. The sensory analysis was the criteria determining the selection of starter strains. CONCLUSIONS: The evaluation of the phenotypic traits demonstrates that D. hansenii is a safe yeast, it is able to tolerate the stress in meat fermentation and it is able to generate desirable aromas. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study confirm the adequacy of selected D. hansenii strains to be applied as starters in meat products.


Assuntos
Debaryomyces , Produtos da Carne , Debaryomyces/genética , Fermentação , Microbiologia de Alimentos , Odorantes/análise , Saccharomyces cerevisiae , Estresse Fisiológico , Fatores de Virulência/análise
9.
Food Chem ; 361: 129997, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029911

RESUMO

The contribution of free amino acids and thiamine to the production of potent meat aroma compounds in nitrite-reduced, dry-fermented sausages inoculated with a D. hansenii strain was the objective of this study. For this, three different sausage formulations were manufactured; a control and two formulations reduced by half in nitrate and nitrite and one of them inoculated with D. hansenii. Free amino acids, thiamine content and savoury volatile compounds were analysed. Eleven savoury volatile compounds were quantitated. Among them, the most potent compounds above their odour thresholds were 2-methyl-3-furanthiol, 2-acetyl-1-pyrroline, methional, dimethyl trisulfide and methyl-2-methyl-3-furyl disulfide. Their generation was affected by D. hansenii inoculation as shown by the decrease in methional and methyl 2-methyl-3-furyl disulfide content, and the increase of methionol. Nitrate and nitrite reduction did not significantly affect amino acid and thiamine contents.


Assuntos
Aminoácidos/análise , Debaryomyces , Alimentos Fermentados/análise , Produtos da Carne/análise , Odorantes/análise , Aldeídos/análise , Fermentação , Alimentos Fermentados/microbiologia , Produtos da Carne/microbiologia , Nitratos/metabolismo , Nitritos/metabolismo , Tiamina/análise , Fermento Seco
10.
Food Microbiol ; 98: 103787, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33875215

RESUMO

The fungal communities and volatile compounds of traditional dry sausages collected from five different regions in Northeast China, including Harbin (HRB), Daqing (DQ), Suihua (SH), Hegang (HG) and Mudanjiang (MDJ) were investigated in this study. The results revealed clear differences among the fungal community structures of the sausages. Aspergillus pseudoglaucus, Debaryomyces hansenii, and Trichosporon asahii were found to be the predominant species in the sausages from HRB, HG, and MDJ, respectively. Candida zeylanoides was the predominant species in the sausage from DQ and SH. Additionally, 88 volatile compounds were identified in all sausages, of which 31 volatile compounds were the most important flavor contributors (odor activity value > 1). Potential correlation analysis revealed that 8 fungi (D. hansenii, C. zeylanoides, T. asahii, A. pseudoglaucus, Aspergillus sydowii, Penicillium expansum, A. alternata, and Alternaria tenuissima) showed significant positive correlations with ≥3 key volatile compounds. Among these fungi, D. hansenii was regarded as a core functional fungus responsible for the formation of the volatile compounds, given its strong connection with the highest number of key volatile compounds. These results provide detailed insight into the fungal communities of traditional dry sausages and a deeper understanding of the contribution of these fungi to sausage flavor.


Assuntos
Alimentos Fermentados/microbiologia , Fungos/isolamento & purificação , Fungos/metabolismo , Produtos da Carne/microbiologia , Micobioma , Compostos Orgânicos Voláteis/metabolismo , Animais , Fermentação , Alimentos Fermentados/análise , Microbiologia de Alimentos , Fungos/classificação , Fungos/genética , Odorantes/análise , Suínos , Paladar , Compostos Orgânicos Voláteis/análise
11.
J Food Biochem ; 45(5): e13711, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33772810

RESUMO

The extract from Debaryomyces hansenii L1-1-fermented Flos Sophorae has a unique aroma and could be used as a natural spice. The influence of yeast growth and culture medium pH on organoleptic properties of fermented substrates, as well as on the content of volatile aromatic compounds, total sugars, polysaccharides, reducing sugars, total proteins, and amino acids, were analyzed. Metabolic pathways were annotated to compare and contrast key aromatic compounds and metabolic profiles of water and ethanol extracts of D. hansenii L1-1-fermented Flos Sophorae. We found that cells grew most rapidly, pH values changed significantly, and the largest consumption of sugars and amino acids occurred within 48 hr, producing bouquet-like, fruity, and sweet odors, as well as the highest content of volatile aromatic compounds in the extracts. The main aroma metabolites were 2-phenylethanol, linalool, and α-terpineol. The sensory quality of the ethanol extracts was superior to that of the water extracts. Five aromatic compounds, isoamyl alcohol, 2-methylbutan-1-ol, isobutyric acid, 2,3-hexanedione, and 1-hexanol, were positively correlated with the water extract group and negatively correlated with the ethanol extract group, whereas 13 aromatic compounds, styrene, acetophenone, 2-octen-1-ol, linalool, naphthalene, α-terpineol, dihydrocarveol, (-)-myrtenol, methyl anthranilate, eugenol, γ-nonanolactone, jasmone, and ß-ionone, showed the converse trend. Although 2-phenylethanol displayed the highest concentration in the extracts, it did not significantly contribute to the separation of ethanol and water extracts. In Flos Sophorae medium, D. hansenii mainly produces 2-phenylethanol from phenylalanine by the Ehrlich reaction, whereas it produces linalool and α-terpineol by the terpenoid backbone and monoterpenoid biosynthetic pathways; the variable contents of proline, arginine, and glutamate could respond to the arginine and proline metabolic pathways. PRACTICAL APPLICATIONS: Flos Sophorae, a collection of buds of Sophora japonica L., is a traditional Chinese medicinal and edible plant for its good aroma, taste, and nutritional value. Debaryomyces hansenii is a common, aroma-producing yeast. D. hansenii L1-1-fermented Flos Sophorae had a unique, bouquet-like aroma, slightly softer than the typical Flos Sophorae-like aroma. This study enriches our understanding of predominant aroma components and determines their contribution to the profiles of Flos Sophorae ferments obtained using D. hansenii L1-1. Researchers and manufacturers specializing in spices making can use these data to improve the aromatic profiles of natural spices produced by microorganisms, thereby obtaining unique aromas.


Assuntos
Debaryomyces , Flores , Metabolômica , Odorantes , Leveduras
12.
J Insect Sci ; 21(2)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33693806

RESUMO

Background odors produced by plants in the environment can interfere with the response of insects to a point-releasing attractant, especially when their compositions overlap. In this study, a series of binary choice tests was conducted in a wind tunnel to investigate whether background odors emitted from cherry, blueberry, blackberry, or raspberry fruits would affect the level of Drosophila suzukii (Matsumura) attraction to its symbiotic yeast, Hanseniaspora uvarum (Niehaus) (Saccharomycetales: Saccharomycetaceae). Whether an increase in the intensity of background odors would affect the attractiveness of H. uvarum to D. suzukii was also investigated, either by increasing the number of cherry or raspberry fruit per cup or by increasing the number of fruit cups surrounding the cup baited with the yeast. In wind tunnel assays, background fruit odors interfering with D. suzukii attraction to the yeast varied among fruit types. Raspberry odor inhibited the attractiveness of H. uvarum to the fly the most, followed by blackberry odor, whereas cherry and blueberry odors had no significant impact on the attraction. An increase in the intensity of odors by adding more cherry or raspberry fruit per cup did not increase the impact of fruit odor on the attraction; however, adding more raspberry cups around H. uvarum linearly decreased its attractiveness, suggesting that background host fruit abundance and likely increase in host odor may influence D. suzukii attraction to yeast odor depending on host species.


Assuntos
Drosophila , Frutas/fisiologia , Hanseniaspora , Odorantes , Animais , Bioensaio/métodos , Mirtilos Azuis (Planta)/fisiologia , Drosophila/microbiologia , Drosophila/fisiologia , Prunus avium/fisiologia , Rubus/fisiologia , Saccharomycetales , Simbiose
13.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672220

RESUMO

Hanseniaspora vineae is a non-Saccharomyces yeast that has a powerful impact on the sensory profile of wines. Its effect on the aromatic profile of non-aromatic grape varieties, such as Albillo Mayor (Vitis vinifera, L), during vinification is a useful biotechnology to improve sensory complexity. Fermentation in steel barrels using Hanseniaspora vineae and sequential inoculation with Saccharomyces cerevisiae have been used to study the formation of terpenes and cell lysis in the production of Albillo white wines. The GC-MS analysis profile shows a significant effect of H. vineae fermentation on the contents of terpenes (≈×3), mainly in linalool (>×3), ß-citronellol (>×4), geraniol (>×2) and α-terpineol (≈×2). The contents of several polyoxygenated terpenes and some volatile phenols with a spicy aroma were increased during fermentation. In summary, Hanseniaspora vineae releases a large number of cell wall polysaccharides during fermentation that affect wine palatability and structure. Hanseniaspora vineae is a powerful bio-tool to enhance the fruitiness, floral notes and freshness in non-aromatic white varieties.


Assuntos
Hanseniaspora/fisiologia , Terpenos/análise , Vinho/microbiologia , Fermentação , Microbiologia de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Hanseniaspora/genética , Odorantes/análise , Polifenóis/análise , Polifenóis/metabolismo , Polissacarídeos/análise , Polissacarídeos/metabolismo , Saccharomyces cerevisiae , Terpenos/metabolismo , Compostos Orgânicos Voláteis/análise , Vinho/análise
14.
Food Microbiol ; 95: 103678, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397613

RESUMO

Beer production is predominantly carried out by Saccharomyces species, such as S. cerevisiae and S. pastorianus. However, the introduction of non-Saccharomyces yeasts in the brewing process is now seen as a promising strategy to improve and differentiate the organoleptic profile of beer. In this study, 17 non-Saccharomyces strains of 12 distinct species were isolated and submitted to a preliminary sensory evaluation to determine their potential for beer bioflavouring. Hanseniaspora guilliermondii IST315 and H. opuntiae IST408 aroma profiles presented the highest acceptability and were described as having 'fruity' and 'toffee' notes, respectively. Their presence in mixed-culture fermentations with S. cerevisiae US-05 did not influence attenuation and ethanol concentration of beer but had a significant impact in its volatile composition. Notably, while both strains reduced the total amount of ethyl esters, H. guilliermondii IST315 greatly increased the concentration of acetate esters, especially when sequentially inoculated, leading to an 8.2-fold increase in phenylethyl acetate ('rose', 'honey' aroma) in the final beverage. These findings highlight the importance of non-Saccharomyces yeasts in shaping the aroma profile of beer and suggest a role for Hanseniaspora spp. in improving it.


Assuntos
Cerveja/análise , Hanseniaspora/metabolismo , Saccharomyces cerevisiae/metabolismo , Cerveja/microbiologia , Técnicas de Cocultura , Etanol/metabolismo , Fermentação , Aromatizantes/análise , Aromatizantes/metabolismo , Humanos , Odorantes/análise , Paladar , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo
15.
Molecules ; 25(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823941

RESUMO

Rosemary (Rosmarinus officinalis L.) is a Mediterranean medicinal and aromatic plant widely used due to valuable bioactive compounds (BACs) and aromas. The aim of the study was to evaluate the extraction of intracellular compounds from rosemary combining experimental procedure by means of high voltage electrical discharge (HVED), with a theoretical approach using two computational simulation methods: conductor-like screening model for real solvents and Hansen solubility parameters. The optimal HVED parameters were as follows: frequency 100 Hz, pulse width 400 ns, gap between electrodes 15 mm, liquid to solid ratio 50 mL/g, voltage 15 and 20 kV for argon, and 20 and 25 kV for nitrogen gas. Green solvents were used, water and ethanol (25% and 50%). The comparison was done with modified conventional extraction (CE) extracted by magnetic stirring and physicochemical analyses of obtained extracts were done. Results showed that HVED extracts in average 2.13-times higher total phenol content compared to CE. Furthermore, nitrogen, longer treatment time and higher voltage enhanced higher yields in HVED extraction. HVED was confirmed to have a high potential for extraction of BACs from rosemary. The computational stimulation methods were confirmed by experimental study, ethanol had higher potential of solubility of BACs and aromas from rosemary compared to water.


Assuntos
Odorantes/análise , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação , Rosmarinus/química , Solventes/química , Fracionamento Químico , Eletricidade , Modelos Teóricos
16.
J Sci Food Agric ; 100(15): 5385-5394, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32535908

RESUMO

BACKGROUND: Icewine produced in China is becoming popular, but there is only limited knowledge available on the yeast population that occurs during fermentation and also on the selection of indigenous Saccharomyces cerevisiae strains for its production. In this work, we first investigated yeast species and the evolution of yeast population in spontaneous fermentations of icewine produced in the Qilian region of China and then analyzed the biodiversity and important enological properties of S. cerevisiae isolates. RESULTS: Seven species of five genera including S. cerevisiae, S. uvarum, Torulaspora delbrueckii, Hanseniaspora uvarum, Lachancea thermotolerans, Metschnikowia aff. fructicola and H. osmophila were identified by the colony morphology on Wallerstein Laboratory Nutrient medium and sequence analysis of the 26S rRNA gene D1/D2 domain. Saccharomyces cerevisiae, H. uvarum and L. thermotolerans were the dominant species, representing almost 87% of the total yeast isolates. Microvinification with seven preselected S. cerevisiae strains were performed on Vidal. All selected strains could complete fermentations, and the enochemical parameters were within the acceptable ranges of the wine industry. W5B3 produced higher amounts of ethyl hexanoate and ethyl octanoate than other strains. R3A10 was a low volatile acid producer and the corresponding icewine presented the highest values on some odorants including ß-damascenone, 1-octen-3-ol, ethyl 2-methylbutyrate, and isoamyl alcohol. Vidal icewines fermented with R3A10, R3A16 and W5B3 were well accepted by the judges because of superior sensory quality. CONCLUSION: Three indigenous strains (R3A10, R3A16 and W5B3) could be used as starters and could potentially improve the regional character of the icewine in Qilian. © 2020 Society of Chemical Industry.


Assuntos
Saccharomyces cerevisiae/metabolismo , Leveduras/metabolismo , China , Fermentação , Aromatizantes/química , Aromatizantes/metabolismo , Microbiologia de Alimentos , Odorantes/análise , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Vinho/análise , Vinho/microbiologia , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
17.
Food Microbiol ; 90: 103460, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336379

RESUMO

The use of Saccharomyces and non-Saccharomyces yeast species as mixed starters has potential advantages over pure culture fermentation due to increased wine complexity based on modification of metabolites of oenological interest. In this work, the effects of initial oxygenation on fermentation performance, chemical and volatile composition of French Colombard wine fermented with Hanseniaspora vineae and Saccharomyces cerevisiae in sequential inoculations were investigated in 1 L flasks. Although dominated by S. cerevisiae at the middle-end of fermentation, initial aeration for 1 day boosted H. vineae populations, and allowed H. vineae to coexist longer with S. cerevisiae in mixed cultures compared to no aeration, and suppressed S. cerevisiae later in the fermentation, which resulted in extended fermentation time. More important, the major fermentation products and volatile compounds were significantly modified by aeration and different from no aeration fermentation. The wines produced by aeration of mixed fermentations were characterized with higher amounts of glycerol, lactic acid and acetate esters, and lower levels of ethanol, higher alcohol and ethyl fatty acid esters. The aeration had more potential to shape the quality of wines and diversify the aromatic characteristics relative to simple mixed inoculation, as indicated by PCA analysis. Our results suggested that the impact of early aeration on yeast physiology extends beyond the aeration phase and influences fermentation activity, chemical and aromatic compounds in the following anaerobic stage. The aeration for a short time during the cell growth stage in mixed fermentation is therefore a potential means to increase the aromatic diversity and quality of wine, possibly providing an alternative approach to meet the expectations of wine consumers for diverse aromatic qualities.


Assuntos
Fermentação , Hanseniaspora/metabolismo , Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Vinho/microbiologia , Álcoois/análise , Etanol/análise , Glicerol/análise , Ácido Láctico/análise , Odorantes/análise
18.
Meat Sci ; 164: 108103, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32145603

RESUMO

The reduction of ingoing amounts of nitrate and nitrite in dry fermented sausages was studied together with the impact of Debaryomyces hansenii inoculation on aroma generation. Three different formulations of sausages were manufactured: control (C), reduced in nitrate and nitrite ingoing amounts (R) and reduced R inoculated with D. hansenii (RY). Changes in physicochemical and microbiological parameters, volatile compounds and aroma were investigated at different drying times. Nitrite/nitrate reduction did not seem to affect microbial growth but affected their metabolic activity. Moreover, nitrite/nitrate reduction decreased lipid oxidation and generation of derived volatile compounds. Yeast inoculation limited lipid oxidation and prevented nitrite oxidation. Sausage aroma profile was positively affected by D. hansenii inoculation which contributed to the generation of potent aroma compounds like ethyl ester compounds and 3-methylbutanal. Long drying time impacted sausage aroma profile as well as yeast metabolism. Yeast inoculation counteracted the negative influence of nitrite/nitrate reduction due to its antioxidant capacity, aroma generation and hindered nitrite oxidation.


Assuntos
Debaryomyces , Produtos da Carne/análise , Odorantes , Animais , Fermentação , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Produtos da Carne/microbiologia , Nitratos/análise , Nitritos/análise , Suínos , Compostos Orgânicos Voláteis/análise
19.
Food Chem ; 306: 125623, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31606633

RESUMO

In this study, apple juice was fermented using Hanseniaspora osmophila X25-5 in pure culture as well as mixed culture with Torulaspora quercuum X24-4, which was inoculated simultaneously or sequentially. H. osmophila inhibited the growth of T. quercuum, while T. quercuum had little effect on the growth of H. osmophila. The simultaneous fermentation consumed relatively more sugar and resulted in the highest ethanol content. The production of organic acids varied depending on the yeast species employed and inoculation modality. Esters and alcohols were the main volatile families produced during fermentation, while ethyl esters and terpenes contributed most to the temperate fruity aroma. Gas chromatography-olfactometry (GC-O) showed that 3-methyl-1-butanol, ethyl 2-methylbutanoate, phenylethyl alcohol, ß-phenethyl acetate, and ß-damascenone were the most potent odorants in all samples. This study suggested that simultaneous fermentation with H. osmophila and T. quercuum might represent a novel strategy for the future production of cider.


Assuntos
Acetatos/análise , Fermentação , Hanseniaspora/metabolismo , Malus/metabolismo , Odorantes/análise , Torulaspora/metabolismo , Bebidas Alcoólicas , Cromatografia Gasosa , Ésteres/análise , Frutas/química , Norisoprenoides/análise , Olfatometria , Vinho/análise
20.
J Food Sci ; 84(10): 2944-2954, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31553057

RESUMO

The objective of this study was to isolate and identify the microorganisms, especially yeasts and molds, related to the improvement of beef quality during dry-aging of beef through microbiome analysis, and to examine the possibility of using them as starter culture strains to improve the efficiency of dry-aging beef production. Beef sirloins were dry-aged for 28 days using different wind speeds (0, 2.5, and 5 m/s) at 1 to 3 °C and 75% relative humidity, and microbial compositions were confirmed by microbiome analysis. Mold and yeast samples were plated on potato dextrose agar supplemented with 10% tartaric acid, and the isolated colonies were identified by DNA sequencing. The isolates were subjected to microbial characterization (morphological characterization, growth condition, and enzyme activity). Microbiome analysis showed that the dominant microorganisms were molds and yeasts identified as Pilaira anomala SMFM201611 and Debaryomyces hansenii SMFM201707. Pilaira anomala SMFM201611 and D. hansenii SMFM201707 were inoculated into 24 sirloins of the lowest grade. All samples were dry-aged for 0, 14, 21, and 28 days and analyzed for microbial growth, pH, shear force, ultrastructure, and flavor compounds (free amino acids and free fatty acids). Inoculation with P. anomala SMFM201611 and D. hansenii SMFM201707 improved tenderness and cause the breakdown of myofibrils by proteolysis. Both microorganisms also produced free amino acids and fatty acids through proteolytic and lipolytic activities. These results indicate that P. anomala SMFM201611 and D. hansenii SMFM201707 isolated and identified from dry-aged beef can improve the quality of low-grade beef during dry-aging. PRACTICAL APPLICATION: During dry-aging, mold and yeast improve the quality of dry-aged beef. Pilaira anomala SMFM201611 and Debaryomyces hansenii SMFM201707 isolated from dry-aged beef can improve tenderness by breaking down myofibrils. Both microorganisms improve flavor by producing free fatty acids and amino acids, and the taste and aroma characteristics of low-grade beef may be improved during the dry-aging process.


Assuntos
Fungos/isolamento & purificação , Microbiota , Carne Vermelha/microbiologia , Leveduras/isolamento & purificação , Animais , Bovinos , Aromatizantes/análise , Microbiologia de Alimentos , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Humanos , Produtos da Carne/análise , Odorantes/análise , Melhoria de Qualidade , Carne Vermelha/análise , Análise de Sequência de DNA , Paladar , Leveduras/classificação , Leveduras/genética , Leveduras/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA