Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Dis Model Mech ; 16(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36951140

RESUMO

Professor Lalita Ramakrishnan is at the forefront of modern tuberculosis (TB) research. She has developed vital tools, most notably a robust zebrafish model, to study this disease, leading to seminal discoveries uncovering bacterial and host interactions throughout infection. Her group has harnessed this knowledge to develop new treatments for TB and shape clinical research. By unveiling these complex interactions, they have also improved our understanding of fundamental biology of macrophages and other infectious diseases, such as leprosy.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Feminino , Peixe-Zebra , Tuberculose/microbiologia , Macrófagos , Interações Hospedeiro-Patógeno
2.
Fundam Clin Pharmacol ; 36(5): 818-826, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35261066

RESUMO

Drugs used to manage type 2 diabetes mellitus cause adverse effects. Therefore, the search for new drugs as an alternative for the treatment of diabetes increases. The effect of triterpene 3ß-6ß-16ß-trihydroxylup-20(29)-ene isolated from the leaves of C. leprosum (CLF-1) on sucrose-induced hyperglycemia in adult zebrafish (Danio rerio) was evaluated. Initially, adult zebrafish (n = 6/group) underwent hyperglycemia induction by sucrose at 83.25 mM/L for 7 days by immersion. The hyperglycemic groups were treated with CLF-1 (4, 20, and 40 mg/kg), metformin (200 mg/kg), and acarbose (300 mg/kg) for 4 days. The in silico interaction of CLF-1, metformin, and acarbose with the enzyme maltase-glucoamylase (CtMGAM) was investigated. CLF-1 reduced sucrose-induced hyperglycemia after 4 days of treatment, in addition to having better affinity energy with CtMGAM than metformin and acarbose. Thus, CLF-1 may be a new pharmacological alternative as a hypoglycemic agent for the treatment of diabetes.


Assuntos
Combretum , Diabetes Mellitus Tipo 2 , Hiperglicemia , Metformina , Triterpenos , Acarbose/farmacologia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hiperglicemia/induzido quimicamente , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta , Sacarose , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Peixe-Zebra
3.
mSphere ; 6(3)2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952660

RESUMO

Mycobacterium tuberculosis infections claim more than a million lives each year, and better treatments or vaccines are required. A crucial pathogenicity factor is translocation from phagolysosomes to the cytosol upon phagocytosis by macrophages. Translocation from the phagolysosome to the cytosol is an ESX-1-dependent process, as previously shown in vitro Here, we show that in vivo, mycobacteria also translocate to the cytosol but mainly when host immunity is compromised. We observed only low numbers of cytosolic bacilli in mice, armadillos, zebrafish, and patient material infected with M. tuberculosis, M. marinum, or M. leprae In contrast, when innate or adaptive immunity was compromised, as in severe combined immunodeficiency (SCID) or interleukin-1 receptor 1 (IL-1R1)-deficient mice, significant numbers of cytosolic M. tuberculosis bacilli were detected in the lungs of infected mice. Taken together, in vivo, translocation to the cytosol of M. tuberculosis is controlled by adaptive immune responses as well as IL-1R1-mediated signals.IMPORTANCE For decades, Mycobacterium tuberculosis has been one of the deadliest pathogens known. Despite infecting approximately one-third of the human population, no effective treatment or vaccine is available. A crucial pathogenicity factor is subcellular localization, as M. tuberculosis can translocate from phagolysosome to the cytosol in macrophages. The situation in vivo is more complicated. In this study, we establish that high-level cytosolic escape of mycobacteria can indeed occur in vivo but mainly when host resistance is compromised. The IL-1 pathway is crucial for the control of the number of cytosolic mycobacteria. The establishment that immune signals result in the clearance of cells containing cytosolic mycobacteria connects two important fields, cell biology and immunology, which is vital for the understanding of the pathology of M. tuberculosis.


Assuntos
Citosol/microbiologia , Mycobacterium/imunologia , Mycobacterium/patogenicidade , Fagossomos/microbiologia , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/imunologia , Transdução de Sinais/imunologia , Animais , Tatus/microbiologia , Translocação Bacteriana , Citosol/imunologia , Feminino , Humanos , Hanseníase/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Mycobacterium/classificação , Fagossomos/imunologia , Pele/microbiologia , Pele/patologia , Células THP-1 , Peixe-Zebra
4.
Biochem Biophys Res Commun ; 533(3): 362-367, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32962857

RESUMO

Drugs used to treat pain are associated with adverse effects, increasing the search for new drugs as an alternative treatment for pain. Therefore, we evaluated the antinociceptive behavior and possible neuromodulation mechanisms of triterpene 3ß, 6ß, 16ß-trihydroxylup-20(29)-ene (CLF-1) isolated from Combretum leprosum leaves in zebrafish. Zebrafish (n = 6/group) were pretreated with CLF-1 (0.1 or 0.3 or 1.0 mg/mL; i.p.) and underwent nociception behavior tests. The antinociceptive effect of CFL-1 was tested for modulation by opioid (naloxone), nitrergic (L-NAME), nitric oxide and guanylate cyclase synthesis inhibitor (methylene blue), NMDA (Ketamine), TRPV1 (ruthenium red), TRPA1 (camphor), or ASIC (amiloride) antagonists. The corneal antinociceptive effect of CFL-1 was tested for modulation by TRPV1 (capsazepine). The effect of CFL-1 on zebrafish locomotor behavior was evaluated with the open field test. The acute toxicity study was conducted. CLF-1 reduced nociceptive behavior and corneal in zebrafish without mortalities and without altering the animals' locomotion. Thus, CFL-1 presenting pharmacological potential for the treatment of acute pain and corneal pain, and this effect is modulated by the opioids, nitrergic system, NMDA receptors and TRP and ASIC channels.


Assuntos
Analgésicos/farmacologia , Combretum/química , Locomoção/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Dor/prevenção & controle , Triterpenos/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Amilorida/farmacologia , Analgésicos/isolamento & purificação , Animais , Cânfora/farmacologia , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Ketamina/farmacologia , Locomoção/fisiologia , Masculino , Azul de Metileno/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Naloxona/farmacologia , Nociceptividade/fisiologia , Dor/metabolismo , Dor/fisiopatologia , Medição da Dor , Extratos Vegetais/química , Folhas de Planta/química , Receptores de N-Metil-D-Aspartato/metabolismo , Rutênio Vermelho/farmacologia , Canais de Cátion TRPV/metabolismo , Triterpenos/isolamento & purificação , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
5.
PLoS Pathog ; 15(2): e1007329, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30818338

RESUMO

Mycobacterial pathogens are the causative agents of chronic infectious diseases like tuberculosis and leprosy. Autophagy has recently emerged as an innate mechanism for defense against these intracellular pathogens. In vitro studies have shown that mycobacteria escaping from phagosomes into the cytosol are ubiquitinated and targeted by selective autophagy receptors. However, there is currently no in vivo evidence for the role of selective autophagy receptors in defense against mycobacteria, and the importance of autophagy in control of mycobacterial diseases remains controversial. Here we have used Mycobacterium marinum (Mm), which causes a tuberculosis-like disease in zebrafish, to investigate the function of two selective autophagy receptors, Optineurin (Optn) and SQSTM1 (p62), in host defense against a mycobacterial pathogen. To visualize the autophagy response to Mm in vivo, optn and p62 zebrafish mutant lines were generated in the background of a GFP-Lc3 autophagy reporter line. We found that loss-of-function mutation of optn or p62 reduces autophagic targeting of Mm, and increases susceptibility of the zebrafish host to Mm infection. Transient knockdown studies confirmed the requirement of both selective autophagy receptors for host resistance against Mm infection. For gain-of-function analysis, we overexpressed optn or p62 by mRNA injection and found this to increase the levels of GFP-Lc3 puncta in association with Mm and to reduce the Mm infection burden. Taken together, our results demonstrate that both Optn and p62 are required for autophagic host defense against mycobacterial infection and support that protection against tuberculosis disease may be achieved by therapeutic strategies that enhance selective autophagy.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Infecções por Mycobacterium não Tuberculosas/metabolismo , Mycobacterium marinum/patogenicidade , Animais , Animais Geneticamente Modificados , Autofagia/fisiologia , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Humanos , Macrófagos , Proteínas de Membrana Transportadoras , Mycobacterium/patogenicidade , Infecções por Mycobacterium/metabolismo , Fagossomos , Proteína Sequestossoma-1 , Fator de Transcrição TFIIIA/metabolismo , Tuberculose , Ubiquitina , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
6.
Biochem Biophys Res Commun ; 497(4): 1104-1109, 2018 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-29499195

RESUMO

As a protein with complex domain structure and roles in kinase, GTPase and scaffolding, LRRK2 is believed to be an important orchestration node leading to several cascades of signal transduction rather than one specific pathway. LRRK2 variants were found to be associated with Parkinson's disease, Crohn's disease and leprosy. Here we disrupt LRRK2 in zebrafish and found hyperactivity rather than hypoactivity in adult zebrafish mutants. By RNA-seq we found genes involved in infectious disease and immunological disease were notably affected. Functional studies also revealed a weakened antibacterial response in LRRK2 mutant. This mutant can be further explored for revealing molecular mechanisms and modeling of LRRK2 related diseases.


Assuntos
Hipercinese/etiologia , Imunidade/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas de Peixe-Zebra/genética , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Comportamento Animal , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Atividade Motora/genética , Mutagênese Sítio-Dirigida , Análise de Sequência de RNA , Peixe-Zebra , Proteínas de Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/fisiologia
7.
J Infect Dis ; 217(9): 1506-1507, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29409003
8.
J Infect Dis ; 216(6): 776-779, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28934421

RESUMO

Understanding the pathogenesis of leprosy granulomas has been hindered by a paucity of tractable experimental animal models. Mycobacterium leprae, which causes leprosy, grows optimally at approximately 30°C, so we sought to model granulomatous disease in the ectothermic zebrafish. We found that noncaseating granulomas develop rapidly and eventually eradicate infection. rag1 mutant zebrafish, which lack lymphocytes, also form noncaseating granulomas with similar kinetics, but these control infection more slowly. Our findings establish the zebrafish as a facile, genetically tractable model for leprosy and reveal the interplay between innate and adaptive immune determinants mediating leprosy granuloma formation and function.


Assuntos
Modelos Animais de Doenças , Granuloma/microbiologia , Hanseníase/microbiologia , Mycobacterium leprae , Animais , Masculino , Peixe-Zebra
9.
Cell ; 170(5): 973-985.e10, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28841420

RESUMO

Mycobacterium leprae causes leprosy and is unique among mycobacterial diseases in producing peripheral neuropathy. This debilitating morbidity is attributed to axon demyelination resulting from direct interaction of the M. leprae-specific phenolic glycolipid 1 (PGL-1) with myelinating glia and their subsequent infection. Here, we use transparent zebrafish larvae to visualize the earliest events of M. leprae-induced nerve damage. We find that demyelination and axonal damage are not directly initiated by M. leprae but by infected macrophages that patrol axons; demyelination occurs in areas of intimate contact. PGL-1 confers this neurotoxic response on macrophages: macrophages infected with M. marinum-expressing PGL-1 also damage axons. PGL-1 induces nitric oxide synthase in infected macrophages, and the resultant increase in reactive nitrogen species damages axons by injuring their mitochondria and inducing demyelination. Our findings implicate the response of innate macrophages to M. leprae PGL-1 in initiating nerve damage in leprosy.


Assuntos
Antígenos de Bactérias/metabolismo , Modelos Animais de Doenças , Glicolipídeos/metabolismo , Hanseníase/microbiologia , Hanseníase/patologia , Macrófagos/imunologia , Mycobacterium leprae/fisiologia , Animais , Axônios/metabolismo , Axônios/patologia , Doenças Desmielinizantes , Larva/crescimento & desenvolvimento , Hanseníase/imunologia , Mycobacterium marinum/metabolismo , Bainha de Mielina/química , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Neuroglia/metabolismo , Neuroglia/patologia , Óxido Nítrico/metabolismo , Peixe-Zebra
10.
Zebrafish ; 14(2): 187-194, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28192066

RESUMO

The zebrafish larval stage is a critical moment due to high mortality rates associated with inadequate supplies of nutritional requirements. Larval feeding has important challenges associated with such factors as small mouth gape (≈100 µm), the low activity of digestive enzymes, and the intake of live food. A common zebrafish live food at the onset of exogenous feeding is rotifers, mainly Brachionus plicatilis. These rotifers should be fed with other microorganisms such as microalgae or yeast, mostly from the Saccharomyces genus. In the laboratory, the culture of microalgae is more expensive than the culture of yeast. The aim of this study was to evaluate the performance of Debaryomyces hansenii as a diet for rotifers in comparison to a microalgae-based diet (Rotigrow®). To achieve this aim, we assessed the rotifer total protein content, the rotifers fatty acid profile, zebrafish larval growth performance, the expression of key growth, and endocrine appetite regulation genes. The total protein and fatty acids content were similar in both rotifer cultures, averaging 35% of dry matter (DM) and 18% of DM, respectively. Interestingly, the fatty acids profile showed differences between the two rotifer cultures: omega-3 fatty acids were only observed in the Microalgae/rotifer, whereas, omega-6 fatty acids presented similar levels in both rotifer cultures. No differences were observed in the larval body length distribution or mortalities between the rotifer cultures. However, gh, igf-1, and cck gene expression showed significantly higher upregulation in zebrafish fed the Microalgae/rotifer diet compared with those fed the Debaryomyces/rotifer diet. In conclusion, D. hansenii could be an alternative diet for rotifer used as a live food in zebrafish larvae at the onset of exogenous feeding. The gene responses observed in this work open up the opportunity to study the effect of omega-3 supply on growth regulation in zebrafish.


Assuntos
Ascomicetos/fisiologia , Rotíferos/fisiologia , Peixe-Zebra/fisiologia , Ração Animal , Animais , Ciência dos Animais de Laboratório , Larva/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-27790411

RESUMO

We investigated mechanisms involved in the protection of zebrafish (Danio rerio) larvae by two probiotic candidate yeasts, Debaryomyces hansenii 97 (Dh97) and Yarrowia lypolitica 242 (Yl242), against a Vibrio anguillarum challenge. We determined the effect of different yeast concentrations (104-107 CFU/mL) to: (i) protect larvae from the challenge, (ii) reduce the in vivo pathogen concentration and (iii) modulate the innate immune response of the host. To evaluate the role of zebrafish microbiota in protection, the experiments were performed in conventionally raised and germ-free larvae. In vitro co-aggregation assays were performed to determine a direct yeast-pathogen interaction. Results showed that both yeasts significantly increased the survival rate of conventionally raised larvae challenged with V. anguillarum. The concentration of yeasts in larvae tended to increase with yeast inoculum, which was more pronounced for Dh97. Better protection was observed with Dh97 at a concentration of 106 CFU/mL compared to 104 CFU/mL. In germ-free conditions V. anguillarum reached higher concentrations in larvae and provoked significantly more mortality than in conventional conditions, revealing the protective role of the host microbiota. Interestingly, yeasts were equally (Dh97) or more effective (Yl242) in protecting germ-free than conventionally-raised larvae, showing that protection can be exerted only by yeasts and is not necessarily related to modulation of the host microbiota. Although none of the yeasts co-aggregated with V. anguillarum, they were able to reduce its proliferation in conventionally raised larvae, reduce initial pathogen concentration in germ-free larvae and prevent the upregulation of key components of the inflammatory/anti-inflammatory response (il1b, tnfa, c3, mpx, and il10, respectively). These results show that protection by yeasts of zebrafish larvae challenged with V. anguillarum relates to an in vivo anti-pathogen effect, the modulation of the innate immune system, and suggests that yeasts avoid the host-pathogen interaction through mechanisms independent of co-aggregation. This study shows, for the first time, the protective role of zebrafish microbiota against V. anguillarum infection, and reveals mechanisms involved in protection by two non-Saccharomyces yeasts against this pathogen.


Assuntos
Imunidade Inata , Fatores Imunológicos/administração & dosagem , Probióticos/administração & dosagem , Saccharomycetales/imunologia , Vibrioses/imunologia , Animais , Modelos Animais de Doenças , Análise de Sobrevida , Vibrioses/patologia , Vibrioses/prevenção & controle , Peixe-Zebra
12.
Oncotarget ; 7(22): 33237-45, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27120781

RESUMO

Thalidomide, a drug known for its teratogenic side-effects, is used successfully to treat a variety of clinical conditions including leprosy and multiple myeloma. Intense efforts are underway to synthesize and identify safer, clinically relevant analogs. Here, we conduct a preliminary in vivo screen of a library of new thalidomide analogs to determine which agents demonstrate activity, and describe a cohort of compounds with anti-angiogenic properties, anti-inflammatory properties and some compounds which exhibited both. The combination of the in vivo zebrafish and chicken embryo model systems allows for the accelerated discovery of new, potential therapies for cancerous and inflammatory conditions.


Assuntos
Inibidores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Embrião de Galinha/efeitos dos fármacos , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Talidomida/farmacologia , Peixe-Zebra/embriologia , Anormalidades Induzidas por Medicamentos/etiologia , Inibidores da Angiogênese/toxicidade , Animais , Animais Geneticamente Modificados , Anti-Inflamatórios/toxicidade , Relação Dose-Resposta a Droga , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Neovascularização Fisiológica/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Medição de Risco , Talidomida/análogos & derivados , Talidomida/toxicidade , Fluxo de Trabalho , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(31): 12703-8, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858438

RESUMO

Thalidomide and its analog, Lenalidomide, are in current use clinically for treatment of multiple myeloma, complications of leprosy and cancers. An additional analog, Pomalidomide, has recently been licensed for treatment of multiple myeloma, and is purported to be clinically more potent than either Thalidomide or Lenalidomide. Using a combination of zebrafish and chicken embryos together with in vitro assays we have determined the relative anti-inflammatory activity of each compound. We demonstrate that in vivo embryonic assays Pomalidomide is a significantly more potent anti-inflammatory agent than either Thalidomide or Lenalidomide. We tested the effect of Pomalidomide and Lenalidomide on angiogenesis, teratogenesis, and neurite outgrowth, known detrimental effects of Thalidomide. We found that Pomalidomide, displays a high degree of cell specificity, and has no detectable teratogenic, antiangiogenic or neurotoxic effects at potent anti-inflammatory concentrations. This is in marked contrast to Thalidomide and Lenalidomide, which had detrimental effects on blood vessels, nerves, and embryonic development at anti-inflammatory concentrations. This work has implications for Pomalidomide as a treatment for conditions Thalidomide and Lenalidomide treat currently.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Neuritos/metabolismo , Neurotoxinas , Teratogênicos , Talidomida/análogos & derivados , Peixe-Zebra/embriologia , Animais , Embrião de Galinha , Galinhas , Lenalidomida , Especificidade da Espécie , Talidomida/farmacologia
14.
Infect Immun ; 80(10): 3512-20, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22851747

RESUMO

SecA2 is an ATPase present in some pathogenic Gram-positive bacteria, is required for translocation of a limited set of proteins across the cytosolic membrane, and plays an important role in virulence in several bacteria, including mycobacteria that cause diseases such as tuberculosis and leprosy. However, the mechanisms by which SecA2 affects virulence are incompletely understood. To investigate whether SecA2 modulates host immune responses in vivo, we studied Mycobacterium marinum infection in two different hosts: an established zebrafish model and a recently described mouse model. Here we show that M. marinum ΔsecA2 was attenuated for virulence in both host species and SecA2 was needed for normal granuloma numbers and for optimal tumor necrosis factor alpha response in both zebrafish and mice. M. marinum ΔsecA2 was more sensitive to SDS and had unique protrusions from its cell envelope when examined by cryo-electron tomography, suggesting that SecA2 is important for bacterial cell wall integrity. These results provide evidence that SecA2 induces granulomas and is required for bacterial modulation of the host response because it affects the mycobacterial cell envelope.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Granuloma/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adenosina Trifosfatases/genética , Animais , Proteínas de Bactérias/genética , Células Cultivadas , Feminino , Humanos , Inflamação/metabolismo , Macrófagos , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/metabolismo , Mycobacterium marinum/genética , Mycobacterium marinum/patogenicidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/genética , Virulência , Peixe-Zebra
15.
Congenit Anom (Kyoto) ; 52(1): 1-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22348778

RESUMO

Thalidomide was originally developed in 1954 as a sedative that was commonly used to ameliorate morning sickness. However, thalidomide exposure during the first trimester of pregnancy caused multiple birth defects (e.g. phocomelia and amelia), affecting ≈ 10,000 children worldwide in the late 1950s and early 1960s. Thalidomide is now recognized as a clinically effective, albeit strictly restricted, drug for the treatment of leprosy and multiple myeloma. Investigators have studied thalidomide teratogenicity for half a century, proposing over 30 hypotheses to account for its actions. Among these, the anti-angiogenesis and oxidative stress models have gained widespread support. Nonetheless, the precise molecular mechanisms and direct targets of thalidomide have not heretofore been elucidated. We developed ferrite-glycidyl methacrylate beads that enable magnetic separation and efficient purification of ligand-binding molecules; the beads were recently employed to identify cereblon as a primary target of thalidomide. Cereblon forms an E3 ubiquitin ligase complex with DDB1, Cul4A, and Roc1, which is important for the expression of fibroblast growth factor 8, an essential regulator of limb development. Expression of a drug binding-deficient mutant of cereblon suppressed thalidomide-induced effects in zebrafish and chicks. This suggests that thalidomide downregulates fibroblast growth factor 8 expression and induces limb malformation by binding to wild-type cereblon, inhibiting the function of the associated E3 ubiquitin ligase. The present review summarizes the teratogenicity of thalidomide, including existing models for its mode of action, and discusses the identification of cereblon as a key molecule for deciphering the longstanding mystery of thalidomide teratogenicity.


Assuntos
Mieloma Múltiplo/tratamento farmacológico , Teratogênicos/farmacologia , Talidomida/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal , Animais , Embrião de Galinha , Feminino , Fator 8 de Crescimento de Fibroblasto/metabolismo , Humanos , Deformidades Congênitas dos Membros/induzido quimicamente , Metacrilatos/química , Neovascularização Patológica , Estresse Oxidativo , Peptídeo Hidrolases/metabolismo , Gravidez , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo , Peixe-Zebra
16.
Cell Mol Life Sci ; 68(9): 1569-79, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21207098

RESUMO

Fifty years ago, prescription of the sedative thalidomide caused a worldwide epidemic of multiple birth defects. The drug is now used in the treatment of leprosy and multiple myeloma. However, its use is limited due to its potent teratogenic activity. The mechanism by which thalidomide causes limb malformations and other developmental defects is a long-standing question. Multiple hypotheses exist to explain the molecular mechanism of thalidomide action. Among them, theories involving oxidative stress and anti-angiogenesis have been widely supported. Nevertheless, until recently, the direct target of thalidomide remained elusive. We identified a thalidomide-binding protein, cereblon (CRBN), as a primary target for thalidomide teratogenicity. Our data suggest that thalidomide initiates its teratogenic effects by binding to CRBN and inhibiting its ubiquitin ligase activity. In this review, we summarize the biology of thalidomide, focusing on the molecular mechanisms of its teratogenic effects. In addition, we discuss the questions still to be addressed.


Assuntos
Anormalidades Induzidas por Medicamentos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Oxidativo , Peptídeo Hidrolases/metabolismo , Teratogênicos/toxicidade , Talidomida/toxicidade , Proteínas Adaptadoras de Transdução de Sinal , Animais , Embrião de Galinha , Fator 8 de Crescimento de Fibroblasto/biossíntese , Humanos , Estresse Oxidativo/efeitos dos fármacos , Coelhos , Especificidade da Espécie , Teratogênicos/química , Teratogênicos/farmacocinética , Talidomida/química , Talidomida/farmacocinética , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Peixe-Zebra
17.
Science ; 327(5971): 1345-50, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20223979

RESUMO

Half a century ago, thalidomide was widely prescribed to pregnant women as a sedative but was found to be teratogenic, causing multiple birth defects. Today, thalidomide is still used in the treatment of leprosy and multiple myeloma, although how it causes limb malformation and other developmental defects is unknown. Here, we identified cereblon (CRBN) as a thalidomide-binding protein. CRBN forms an E3 ubiquitin ligase complex with damaged DNA binding protein 1 (DDB1) and Cul4A that is important for limb outgrowth and expression of the fibroblast growth factor Fgf8 in zebrafish and chicks. Thalidomide initiates its teratogenic effects by binding to CRBN and inhibiting the associated ubiquitin ligase activity. This study reveals a basis for thalidomide teratogenicity and may contribute to the development of new thalidomide derivatives without teratogenic activity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Peptídeo Hidrolases/metabolismo , Teratogênicos/toxicidade , Talidomida/toxicidade , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Embrião de Galinha , Proteínas Culina/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Membro Anterior/anormalidades , Membro Anterior/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Humanos , Proteínas Mutantes/metabolismo , Peptídeo Hidrolases/genética , Teratogênicos/metabolismo , Talidomida/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitinação , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
Cell ; 140(5): 717-30, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20211140

RESUMO

Exposure to Mycobacterium tuberculosis produces varied early outcomes, ranging from resistance to infection to progressive disease. Here we report results from a forward genetic screen in zebrafish larvae that identify multiple mutant classes with distinct patterns of innate susceptibility to Mycobacterium marinum. A hypersusceptible mutant maps to the lta4h locus encoding leukotriene A(4) hydrolase, which catalyzes the final step in the synthesis of leukotriene B(4) (LTB(4)), a potent chemoattractant and proinflammatory eicosanoid. lta4h mutations confer hypersusceptibility independent of LTB(4) reduction, by redirecting eicosanoid substrates to anti-inflammatory lipoxins. The resultant anti-inflammatory state permits increased mycobacterial proliferation by limiting production of tumor necrosis factor. In humans, we find that protection from both tuberculosis and multibacillary leprosy is associated with heterozygosity for LTA4H polymorphisms that have previously been correlated with differential LTB(4) production. Our results suggest conserved roles for balanced eicosanoid production in vertebrate resistance to mycobacterial infection.


Assuntos
Epóxido Hidrolases/genética , Doenças dos Peixes/genética , Hanseníase/genética , Tuberculose/genética , Animais , Modelos Animais de Doenças , Doenças dos Peixes/imunologia , Predisposição Genética para Doença , Humanos , Hanseníase/imunologia , Tuberculose/imunologia , Peixe-Zebra
19.
Artigo em Inglês | MEDLINE | ID: mdl-19736424

RESUMO

BACKGROUND: In the present scenario, wrinkle formation, prominent sign of skin ageing, is one of the most demanding areas of research. This burgeoning research demand to reduce, delay and restore the effects of skin ageing has led to the study of various signaling pathways leading to wrinkle formation. Wrinkles appear on skin due to influence of intrinsic and extrinsic factors on mitogenic reactions and signal transduction pathways. AIM: The aim of the present study is to analyze each protein involved in the signaling pathway leading to dilapidation of collagen and an attempt has been made to compare different signal transduction pathways to identify a common target for skin ageing. METHODS: In the present work, bioinformatics tools have been used to extract information from already existing experimental data. The statistical techniques are used for further analysis and make useful predictions for skin ageing. RESULTS: Stressors like UV irradiation, osmotic stress and heat shock have been reported to activate epidermal growth factor receptor, interleukin 1 receptor, tumor necrosis factor receptor, platelet-derived growth factor receptor and platelet activation factor receptor signaling pathways, which lead to the production of matrix metalloproteinases, collagen degradation and, consequently, wrinkle formation. When all the five signaling pathways were modeled, the c-jun part of the AP-1 transcription factor was found to be a common intermediate protein involved in all the signaling cascades. Moreover, it shows differential expression in the skin on response to stressors. CONCLUSION: We proposed c-jun to be the most potent target for drug designing against wrinkle formation.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Modelos Biológicos , Transdução de Sinais/fisiologia , Envelhecimento da Pele/fisiologia , Animais , Bovinos , Galinhas , Cães , Inibidores Enzimáticos/administração & dosagem , Genes jun/efeitos dos fármacos , Genes jun/fisiologia , Haplorrinos , Camundongos , Gambás , Pan troglodytes , Ratos , Transdução de Sinais/efeitos dos fármacos , Envelhecimento da Pele/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia , Suínos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA