Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Curr Genet ; 66(6): 1135-1153, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32719935

RESUMO

Halotolerant species are adapted to dealing continually with hyperosmotic environments, having evolved strategies that are uncommon in other organisms. The HOG pathway is the master system that regulates the cellular adaptation under these conditions; nevertheless, apart from the importance of Debaryomyces hansenii as an organism representative of the halotolerant class, its HOG1 pathway has been poorly studied, due to the difficulty of applying conventional recombinant DNA technology. Here we describe for the first time the phenotypic characterisation of a null HOG1 mutant of D. hansenii. Dhhog1Δ strain was found moderately resistant to 1 M NaCl and sensitive to higher concentrations. Under hyperosmotic shock, DhHog1 fully upregulated transcription of DhSTL1 and partially upregulated that of DhGPD1. High osmotic stress lead to long-term inner glycerol accumulation that was partially dependent on DhHog1. These observations indicated that the HOG pathway is required for survival under high external osmolarity but dispensable under low and mid-osmotic conditions. It was also found that DhHog1 can regulate response to alkali stress during hyperosmotic conditions and that it plays a role in oxidative and endoplasmic reticulum stress. Taken together, these results provide new insight into the contribution of this MAPK in halotolerance of this yeast.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana Transportadoras/genética , Osmorregulação/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Álcalis/efeitos adversos , Regulação Fúngica da Expressão Gênica , Glicerol/metabolismo , Pressão Osmótica/fisiologia , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Saccharomycetales/fisiologia , Transdução de Sinais/genética
2.
J Bacteriol ; 195(7): 1610-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23292779

RESUMO

In Mycobacterium, multidrug efflux pumps can be associated with intrinsic drug resistance. Comparison of putative mycobacterial transport genes revealed a single annotated open reading frame (ORF) for a multidrug and toxic compound extrusion (MATE) family efflux pump in all sequenced mycobacteria except Mycobacterium leprae. Since MATE efflux pumps function as multidrug efflux pumps by conferring resistance to structurally diverse antibiotics and DNA-damaging chemicals, we studied this gene (MSMEG_2631) in M. smegmatis mc(2)155 and determined that it encodes a MATE efflux system that contributes to intrinsic resistance of Mycobacterium. We propose that the MSMEG_2631 gene be named mmp, for mycobacterial MATE protein. Biolog Phenotype MicroArray data indicated that mmp deletion increased susceptibility for phleomycin, bleomycin, capreomycin, amikacin, kanamycin, cetylpyridinium chloride, and several sulfa drugs. MSMEG_2619 (efpA) and MSMEG_3563 mask the effect of mmp deletion due to overlapping efflux capabilities. We present evidence that mmp is a part of an MSMEG_2626-2628-2629-2630-2631 operon regulated by a strong constitutive promoter, initiated from a single transcription start site. All together, our results show that M. smegmatis constitutively encodes an Na(+)-dependent MATE multidrug efflux pump from mmp in an operon with putative genes encoding proteins for apparently unrelated functions.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium smegmatis/metabolismo , Técnicas de Tipagem Bacteriana , Deleção de Genes , Proteínas de Membrana Transportadoras/genética , Análise em Microsséries , Mycobacterium smegmatis/genética , Óperon , Fenótipo , Regiões Promotoras Genéticas , Especificidade por Substrato , Sítio de Iniciação de Transcrição
3.
Med Hypotheses ; 79(6): 875-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23063908

RESUMO

Oculocutaneous albinism type 2 (OCA2) is present at significantly higher frequencies in sub-Saharan African populations compared to populations in other regions of the world. In Tanzania and other sub-Saharan countries, most OCA2 is associated with a common 2.7kb deletion allele. Leprosy is also in high prevalence in sub-Saharan African populations. The infectious agent of leprosy, Mycobacterium leprae, contains a gene, 38L, that is similar to OCA2. Hypopigmented patches of skin are early symptoms that present with infection of leprosy. In consideration of both the genetic similarity of OCA2 and the 38L gene of M. leprae and the involvement of pigmentation in both disorders, we hypothesized that the high rates of OCA2 may be due to heterozygote advantage. Hence, we hypothesized that carriers of the 2.7kb deletion allele of OCA2 may provide a protective advantage from infection with leprosy. We tested this hypothesis by determining the carrier frequency of the 2.7kb deletion allele from a sample of 240 individuals with leprosy from Tanzania. The results were inconclusive due to the small sample size; however, they enabled us to rule out a large protective effect, but perhaps not a small advantage. Mycobacterium tuberculosis is another infectious organism prevalent in sub-Saharan Africa that contains a gene, arsenic-transport integral membrane protein that is also similar to OCA2. Interestingly, chromosomal region 15q11-13, which also contains OCA2, was reported to be linked to tuberculosis susceptibility. Although variants within OCA2 were tested for association, the 2.7kb deletion allele of OCA2 was not tested. This led us to hypothesize that the deletion allele may confer resistance to susceptibility. Confirmation of our hypothesis would enable development of novel pharmocogenetic therapies for the treatment of tuberculosis, which in turn, may enable development of drugs that target other pathogens that utilize a similar infection mechanism as M. tuberculosis. From an evolutionary perspective, confirmation of our hypothesis may provide another example of heterozygote advantage.


Assuntos
Albinismo/genética , Alelos , Proteínas de Membrana Transportadoras/genética , Seleção Genética , Albinismo/microbiologia , Humanos , Modelos Teóricos , Tanzânia
4.
Infect Immun ; 80(10): 3512-20, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22851747

RESUMO

SecA2 is an ATPase present in some pathogenic Gram-positive bacteria, is required for translocation of a limited set of proteins across the cytosolic membrane, and plays an important role in virulence in several bacteria, including mycobacteria that cause diseases such as tuberculosis and leprosy. However, the mechanisms by which SecA2 affects virulence are incompletely understood. To investigate whether SecA2 modulates host immune responses in vivo, we studied Mycobacterium marinum infection in two different hosts: an established zebrafish model and a recently described mouse model. Here we show that M. marinum ΔsecA2 was attenuated for virulence in both host species and SecA2 was needed for normal granuloma numbers and for optimal tumor necrosis factor alpha response in both zebrafish and mice. M. marinum ΔsecA2 was more sensitive to SDS and had unique protrusions from its cell envelope when examined by cryo-electron tomography, suggesting that SecA2 is important for bacterial cell wall integrity. These results provide evidence that SecA2 induces granulomas and is required for bacterial modulation of the host response because it affects the mycobacterial cell envelope.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Granuloma/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adenosina Trifosfatases/genética , Animais , Proteínas de Bactérias/genética , Células Cultivadas , Feminino , Humanos , Inflamação/metabolismo , Macrófagos , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/metabolismo , Mycobacterium marinum/genética , Mycobacterium marinum/patogenicidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/genética , Virulência , Peixe-Zebra
6.
J Mol Microbiol Biotechnol ; 16(3-4): 169-75, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18311074

RESUMO

We report here the molecular identification of a glucose permease from Mycobacterium smegmatis,a model organism for our understanding of the life patterns of the major pathogens Mycobacterium tuberculosis and Mycobacterium leprae. A computer-based search of the available genome of M. smegmatis mc(2) 155 with the sequences of well-characterized glucose transporters revealed the gene msmeg4187 as a possible candidate. The deduced protein belongs to the major facilitator superfamily of proton symporters and facilitators and exhibits up to 53% of amino acid identity to other members of this family. Heterologous expression of msmeg4187 in an Escherichia coli glucose-negative mutant led to the restoration of growth on glucose. The determination of the biochemical features characterize MSMEG4187 (GlcP) as a high affinity (K(m) of 19 microM), glucose-specific permease. The results represent the first molecular characterization of a sugar permease in mycobacteria, and thus supply fundamental data for further in-depth analysis on the nutritional lifestyle of these bacteria.


Assuntos
Transporte Biológico , Glucose/metabolismo , Proteínas de Membrana Transportadoras/genética , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Glucose/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mycobacterium smegmatis/fisiologia , Filogenia
7.
Genetics ; 172(2): 771-81, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16118182

RESUMO

We have traced the evolution patterns of 2480 transmembrane transporters from five complete genome sequences spanning the entire Hemiascomycete phylum: Saccharomyces cerevisiae, Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii, and Yarrowia lipolytica. The use of nonambiguous functional and phylogenetic criteria derived from the TCDB classification system has allowed the identification within the Hemiascomycete phylum of 97 small phylogenetic transporter subfamilies comprising a total of 355 transporters submitted to four distinct evolution patterns named "ubiquitous," "species specific," "phylum gains and losses," or "homoplasic." This analysis identifies the transporters that contribute to the emergence of species during the evolution of the Hemiascomycete phylum and may aid in establishing novel phylogenetic criteria for species classification.


Assuntos
Ascomicetos/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Evolução Molecular , Candida albicans/genética , Candida albicans/metabolismo , Candida glabrata , Genoma Fúngico , Kluyveromyces/genética , Kluyveromyces/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Família Multigênica , Proteoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Yarrowia/genética , Yarrowia/metabolismo
8.
Biochemistry ; 32(12): 3139-45, 1993 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-8457574

RESUMO

Using a lactose permease mutant devoid of Cys residues (C-less permease), Asp237 and Lys358 were replaced with Cys or other amino acids to pursue the proposal that the two residues form a charge pair [King, S. C., Hansen, C. L., & Wilson, T.H. (1991) Biochim. Biophys. Acta 1062, 177-186]. Individual replacement of Asp237 with Cys, Ala, or Lys or replacement of Lys358 with Cys, Ala, or Asp virtually abolishes active lactose transport. However, simultaneous replacement of both residues with Cys and/or Ala yields permease with high activity. Therefore, neutral amino acid substitutions at either position are detrimental only because they leave the opposing charge unpaired. Strikingly, moreover, when Asp237 is interchanged with Lys358, high activity is observed. The results indicate strongly that Asp237 and Lys358 interact to form a salt bridge and that neither residue nor the salt bridge per se is important for activity. Immunoblots reveal low membrane levels of the active mutants lacking the putative salt bridge, suggesting a role for the salt bridge in either permease folding or stability and raising the possibility that the salt bridge may exist in a folding intermediate but not in the mature protein. Remarkably, however, a mutant with Cys in place of Asp237 is restored to full activity by carboxymethylation which recreates a negative charge at position 237. Pulse-chase analysis and heat-inactivation studies indicate that the stability of the double mutant with Cys at positions 237 and 358 is comparable to C-less. Therefore, the interaction between Asp237 and Lys358 is likely to be important for permease folding and is maintained in the mature protein.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Ácido Aspártico/química , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Lisina/química , Proteínas de Membrana Transportadoras/química , Proteínas de Transporte de Monossacarídeos , Simportadores , Sequência de Aminoácidos , Sequência de Bases , Transporte Biológico Ativo , Cisteína/química , Cisteína/metabolismo , Eletroquímica , Estabilidade Enzimática , Cinética , Lactose/metabolismo , Moduladores de Transporte de Membrana , Proteínas de Membrana Transportadoras/antagonistas & inibidores , Proteínas de Membrana Transportadoras/genética , Metilação , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Relação Estrutura-Atividade , Reagentes de Sulfidrila/farmacologia
9.
Proc Natl Acad Sci U S A ; 89(21): 10547-51, 1992 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-1438245

RESUMO

Using a lactose permease mutant devoid of Cys residue ("C-less permease"), we systematically replaced putative intramembrane charged residues with Cys. Individual replacements for Asp-237, Asp-240, Glu-269, Arg-302, Lys-319, His-322, Glu-325, or Lys-358 abolish active lactose transport. When Asp-237 and Lys-358 are simultaneously replaced with Cys and/or Ala, however, high activity is observed. Therefore, when either Asp-237 or Lys-358 is replaced with a neutral residue, leaving an unpaired charge, the permease is inactivated, but neutral replacement of both residues yields active permease [King, S. C., Hansen, C. L. & Wilson, T. H. (1991) Biochim. Biophys. Acta 1062, 177-186]. Remarkably, moreover, when Asp-237 is interchanged with Lys-358, high activity is observed. The observations provide a strong indication that Asp-237 and Lys-358 interact to form a salt bridge. In addition, the data demonstrate that neither residue nor the salt bridge plays an important role in the transport mechanism. Thirteen additional double mutants were constructed in which a negative and a positively charged residue were replaced with Cys. Only Asp-240-->Cys/Lys-319-->Cys exhibits significant activity, accumulating lactose to 25-30% of the steady state observed with C-less permease. Replacing either Asp-240 or Lys-319 individually with Ala also inactivates the permease, but double mutants with neutral substitutions (Cys and/or Ala) at both positions exhibit essentially the same activity as Asp-240-->Cys/Lys-319-->Cys. In marked contrast to Asp-237 and Lys-358, interchanging Asp-240 and Lys-319 abolishes active lactose transport. The results demonstrate that Asp-240 and Lys-319, like Asp-237 and Lys-358, interact functionally and may form a salt bridge. However, the interaction between Asp-240 and Lys-319 is clearly more complex than the interaction between Asp-237 and Lys-358. In any event, the findings suggest that putative transmembrane helix VII lies next to helices X and XI in the tertiary structure of lactose permease.


Assuntos
Proteínas de Escherichia coli , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos , Simportadores , Sequência de Aminoácidos , Sequência de Bases , Transporte Biológico Ativo , Membrana Celular/enzimologia , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Escherichia coli/genética , Cinética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Estruturais , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plasmídeos , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA