Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Small GTPases ; 9(3): 216-223, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27645564

RESUMO

Our immune system is engaged in a continuous battle against invading pathogens, many of which have evolved to survive in intracellular niches of mammalian hosts. A variety of cellular processes are involved in preventing bacterial invasion or in killing bacteria that successfully invade host cells. Recently, the Rab GTPase Rab32 emerged as critical regulator of a host defense pathway that can eliminate bacterial pathogens. Salmonella enterica is an intracellular bacterium and a major cause of infections and deaths in humans. Rab32 and its guanine nucleotide exchange factor BLOC-3 are essential to prevent the growth of the human-restricted Salmonella enterica serovar Typhi (S. Typhi) in mice, a non-susceptible host. The importance of the Rab32/BLOC-3 pathway has been recently confirmed by the finding that broad-host Salmonella enterica serovars deliver 2 bacterial effectors to neutralize this pathway and infect mice. Rab32 has also been shown to control infection by Listeria monocytogenes, another medically relevant intracellular pathogen. In addition, genetic evidence indicate a possible role of Rab32 in controlling leprosy, a disease caused by Mycobacterium leprae in humans, suggesting that a Rab32-dependent pathway can also act as a host defense pathway in humans. The Rab32 role in bacterial pathogen restriction is discussed here and compared to the function of this GTPase in other cellular processes.


Assuntos
Fenômenos Fisiológicos Bacterianos , Interações Hospedeiro-Patógeno , Espaço Intracelular/microbiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Transporte Biológico , Humanos , Espaço Intracelular/metabolismo
2.
Sci Rep ; 6: 29945, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27424887

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) has been linked to several clinical disorders including Parkinson's disease (PD), Crohn's disease, and leprosy. Furthermore in rodents, LRRK2 deficiency or inhibition leads to lysosomal pathology in kidney and lung. Here we provide evidence that LRRK2 functions together with a second PD-associated gene, RAB7L1, within an evolutionarily conserved genetic module in diverse cellular contexts. In C. elegans neurons, orthologues of LRRK2 and RAB7L1 act coordinately in an ordered genetic pathway to regulate axonal elongation. Further genetic studies implicated the AP-3 complex, which is a known regulator of axonal morphology as well as of intracellular protein trafficking to the lysosome compartment, as a physiological downstream effector of LRRK2 and RAB7L1. Additional cell-based studies implicated LRRK2 in the AP-3 complex-related intracellular trafficking of lysosomal membrane proteins. In mice, deficiency of either RAB7L1 or LRRK2 leads to prominent age-associated lysosomal defects in kidney proximal tubule cells, in the absence of frank CNS pathology. We hypothesize that defects in this evolutionarily conserved genetic pathway underlie the diverse pathologies associated with LRRK2 in humans and in animal models.


Assuntos
Axônios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Axônios/ultraestrutura , Linhagem Celular , Endossomos/metabolismo , Endossomos/ultraestrutura , Células HEK293 , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/deficiência , Lisossomos/ultraestrutura , Proteínas de Membrana/metabolismo , Camundongos , Neurônios Motores/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas rab de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA